
-Study of  Limi tat ion of Super  Reso lut ion Image Reconstruc tion 

and Image Quality Assessment of Displays with Super Resolution - 



-Study of Limitation of Super Resolution Image Reconstruction

and Image Quality Assessment of Displays with Super Resolution-

2018 3



Study of Limitation of Super Resolution Image

Reconstruction and Image Quality Assessment of

Displays with Super Resolution

Chinatsu Mori

Department of Informatics

Graduate School of Engineering

Kogakuin University

March, 2018



Acknowledgments

I would like to express my deepest gratitude to the many people who so generously contributed

to the work presented in this dissertation.

I would like to express my special appreciation and thanks to my supervisor, Prof. Seiichi

Gohshi, who always gave me suggestions and encouraged me to keep moving forward. His

guidance was great help for me to obtain current achievements and finish this dissertation. I had

a lot of invaluable experiences during my Ph.D. course, and I am grateful to him not only for

his tremendous academic support, but also for giving me so many wonderful opportunities.

Besides my supervisor, I would like to thank the rest of my dissertation committee: Prof.

Eisaku Oho, Prof. Norio Baba, and Prof. Takayuki Hamamoto, for their insightful comments

and encouragement.Thanks for their help and patience during their extremely busy schedule.

My sincere thanks also go to Mr. Yuji Watanabe, Mr. Hiroyuki Tabata, Mr. Keisuke Ohashi,

Mr. Shinichiro Nakamura, from Keisoku Giken Co., Ltd., and Mr. Yoshikatsu Tatsumi, from

Fujitsu Connected Technologies Limited, for providing experimental equipment and for techni-

cal support. Also I would like to thank to Prof. Kenkichi Tanioka from Tokyo Denki University,

for huge contribution of his works to this dissertation.

I would like to thank all the members of Gohshi lab, for giving me support and assistance

to my research and daily life, and for all the fun we have had in the last six years. In particular,

I am grateful to Mr. Masaki Sugie, and Mr. Hirohisa Takeshita, for enormous contribution with

this dissertation.

Last but not the least, I would like to thank my beloved family for their constant support.

They gave me the courage to challenge and finish the Ph.D. course and I dedicate this disserta-

tion to them.

1



Contents

1 Introduction 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Super Resolution Image Reconstruction . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Reconstruction Process for Super Resolution Image Reconstruction . . 6

1.2.2 Essential Problems of Super Resolution Image Reconstruction . . . . . 9

1.3 Assessment of Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Super Resolution Image Reconstruction and Super Resolution with Nonlinear

Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Super Resolution with Nonlinear Signal Processing for Resolution Enhance-

ment of 4K Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Super Resolution for Smartphones . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Super Resolution Image Reconstruction and Imaging Device 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 SRR and Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Nyquist Sampling Theorem and Subsample . . . . . . . . . . . . . . . 19

2.2.2 Still Image and Video . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Essential Issue of SRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Imaging Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Block Shaped Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Subjective Assessment Method for Multiple Displays with Super Resolution 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Subjective Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Scheffe’s Paired Comparison . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Observers and Test Sequences . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Experimental Environments . . . . . . . . . . . . . . . . . . . . . . . 34

4 Subjective Assessment of 4K TV Set with Super Resolution Image Reconstruction 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Subjective Assessment Experiments . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Assessment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Experimental Set Up and Environments . . . . . . . . . . . . . . . . . 37

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Subjective Assessment of 4K videos with super resolution with nonlinear signal

processing 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Subjective Assessment Method . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.4 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.5 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Subjective Assessment of Smartphone Displays with Super Resolution using Best-

worst Method 53

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Super Resolution with Nonlinear Signal Processing . . . . . . . . . . . . . . . 55

3



6.3 Subjective Assessment Method . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Best-worst Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.2 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.3 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4.4 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusions 64

4



Chapter 1

Introduction

1.1 Introduction

The resolution improvement technologies for images/videos are desired for many imaging and

viewing applications. Quality of a video is important when we enjoy watching various content.

Resolution has been frequently represented as quantitative quality. Resolution of TV displays

has been improved from analog (640 × 480) to high definition (1,920 × 1,080). In 2011, 4K
(3,840 × 2,160) TV sets with the four times resolution of HDTV have been released. Recently,

8K (7,680 × 4,320) TVs and broadcasting systems for practical use are under development for
the Tokyo Olympic Games in 2020.

A TV set is a conventional video device for watching video content. Recently, new devices

for watching video, such as smartphones have been introduced. Resolution of smartphone dis-

plays has been increasing similarly to TV sets; the resolution has been improved from half-size

video graphics (HVGA) (480 × 340) to high-definition (HD) (720 × 1,280), and to wide quad
HD (WQHD (2,560 × 1,440). Recently, a smartphone with a 4K display is also introduced.

In order to improve resolution, all of the systems need to be improved as well. Figure 1.1

shows imaging and viewing system for image/video. The system shown in Figure 1.1 progresses

from left to right. The scene with the object on the left is captured with an imaging device

within still/ video camera. The captured data is encoded with any format to reduce the cost of

storage or transmission. The coded data is then transmitted through broadcasting or network,

and received by the display devices. The received data is decoded and they are processed with

size conversion or quality correction. After these processes, the data is finally displayed on the

monitor.
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Figure 1.1: Progress of imaging and viewing system

Although 4K displays are currently available, we cannot enjoy watching videos in 4K reso-

lution. 4K video content is insufficient and the provided content is almost entirely recorded with

HDTV. Playing HDTV content on a 4K display does not improve resolution theoretically, as the

content is merely enlarged to fit to the display, resulting in an interpolated image. Therefore,

alternative ways of improving content resolution are required.

1.2 Super Resolution Image Reconstruction

Super resolution (SR) is one of the ways of improving the resolution of recorded images and

videos. SR is different from the previous image enhancement technology called enhancer (or

unsharp mask) [1]. SR can create high-frequency elements an enhancer cannot create. There

are numerous SR methods previously reported and some different types of SR method are prac-

tically used; super resolution image reconstruction (SRR) [2][3][4][5][6], super resolution with

nonlinear signal processing (NLSP) [7][8][9], and learning-based super resolution[10][11][12]

[13][14]. SRR is the most popular SR method with the most extensive body o research. The

following is a description of process which may potentially work with SRR.

1.2.1 Reconstruction Process for Super Resolution Image Reconstruction

SRR creates a high-resolution image (HRI) from multiple low-resolution images (LRIs). Figure

1.2 shows the process of SRR. In Figure 1.2, the signal is processed from the top to the bottom.

The HRI at the top of the figure is prepared for SRR processing. The low-pass-filter (LPF)

limits the bandwidth of the HRI. The HRI processed with LPF is subsampled, and multiple

LRIs are created. LRIs are generated by subsampling pixels at different phases. The example of

Figure 1.2 is the 2:1 subsample. The pixels of four LRIs can compose all the pixels of the HRI,

6
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Figure 1.2: Super resolution image reconstruction

but SRR requires many LRIs with duplicated pixels. The reconstruction process is solving an

inverse problem and this process is iterated until the value of the cost function is minimized.

The process for generating LRIs with SRR is shown in Figure 1.3 [2]. The top of Figure

1.3 is a real world scene as a continuous HRI. The HRI is warped because of the motion. The

HRI is also blurred by the camera lens with continuous point spread function (PSF), and then

discretized by the imaging device such as CCD. The additive Gaussian noise is added with the

digitalized image, and the blurred and noisy LRIs are generated. The process in Figure 1.3 can

be expressed by a product matrix as shown in Equation 1.1.

Yk = DkHkFkX + Vk (k = 1, 2, ...,N) (1.1)

The matrix Yk represents the kth LRI, and matrix X represents HRI. The matrix F represents

the motion effect operator of the warp, the matrix Hk represents the PSF of the camera lenses,

and the matrix D represents the down sampling operator for the discretization. The matrix V

is the additive Gaussian noise.The HRI X̂ is reconstructed by the error minimization between

available LRIs (Yk) and the LRIs generated from estimated HRI X:

7
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Figure 1.3: Degradation process for SRR
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X̂ = arg min
X

[
N∑
k=1

||DkHkFkX − Yk||1] (1.2)

where DkHkFkX is the LRIs generated from the temporal high-resolution image X. The argmin

function gives the X at which the error is minimized.

Some forms of regularization must be introduced in the cost function to solve the problem

and to minimize the effect of the noise. There are various forms of regularization, such as

bilateral total variation (BTV) [2], maximum a posteriori (MAP) [15], projection onto convex

sets (POCS) [16], maximum likelihood (ML) [17] iterative backward projection (IBP) [18]. In

this study, SRR using BTV method, which is a most common method [2], is focused. BTV is a

regularization constraint to remove the noise and to preserve the edges. The regularization term

is added to the cost function shown in Equation 1.2.

X̂ = arg min
X

[
N∑
k=1

||DkHkFkX − Yk||1 + λ
P∑

l=−P

P∑
m=−P
α|m|+|l|||X − S lxS my X||1] (1.3)

The second term of Equation 1.3 is the regularization term using BTV. P represents the kernel

radius of the selection window, and S lx and S my are pixels shifted l and m pixels in the x and y

directions. α (0 < α < 1) is the scale weighted coefficient. λ represents the weighted coefficient

for regularization.

1.2.2 Essential Problems of Super Resolution Image Reconstruction

SRR algorithm has been proposed by Farsiu and Robinson [2]. They demonstrated the simu-

lation results for still images and videos and claimed to have come up with a working SRR.

However, there is no guarantee for the SRR to be able to stand its ground as for as the general

use is concerned [19][20]. SRR algorithm requires the existence of the original HRI. In the

practical applications, an HRI cannot be prepared and only the LRIs are given: It is unknown

whether the HRI as a correct solution for SRR exists. Moreover, the LRIs involving aliasing are

created from an original HRI with the insufficient bandwidth limitation and sub sampling. The

ability of SRR for the general content cannot be proven since the general content does not have

aliasing.

Many SRRwith different cost functions have been reported [21][22][23][24][25][26][27][28]

9



and their performances with peak signal to noise ratio (PSNR) have been demonstrated, how-

ever, the improvement of their performance is very slight.

Some papers mentioned the limitation of SRR [21][22][29]. The limit of magnificaton for

SRR was analyzed [21][22], and it was 1.6-5.6 depending on conditions [22]. Moreover, the

theoretical relationship between the limit of the magnification and the point spread function

(PSF) was reported [29]. In these references [21][22][29], a still HRI as the original image

was used to create LRIs. They also assume that the shape of the aliasing in LRIs was a sinc

function and that the aliasing has the infinite frequency characteristics[29]. However, there is

no evidence for these assumptions. Although there is a deep relationship between the aliasing

and the performance of the limitations of SRR, their relationship has not been theoretically

analyzed. The theoretical limitation of SRR is discussed in Chapter 2.

1.3 Assessment of Super Resolution

SR technology has advanced during this century, and it has been applied to TV or smartphone

displays. Image quality is an important feature for display products such as TV and smart-

phones. SR is used as a marketing term meaning the high performance of the display, and it

has become familiar to consumers; however, the performance of the SR function to improve

the resolution quality of content is unclear. There is no knowing if there is a difference in the

qualities of the displays with different SR functions.

Image quality assessments are generally divided into two types: objective and subjective.

An objective assessment is a mathematical evaluation with signal analysis, whereas a subjective

assessment is a statistical evaluation with human perceptions.

There is a strong demand for objective assessments, as they are convenient and timesaving

owing to the possibility of automatic evaluation using computerized programs. Peak signal-to-

noise ratio (PSNR) is most commonly used to measure the quality [30]. PSNR means the ratio

between the maximum possible power of a signal and the power of corrupting noise. PSNR is

defined via the means squared error (MSE). MSE and PSNR are defined as Equations 1.4 and

1.5.

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

(P(i, j) − Q(i, j))2 (1.4)

10
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Figure 1.4: PSNR assessment of super resolution

PSNR = 20log10
MAXp√
MSE

(1.5)

where P and Q are two images before and after signal processing. i and j are the coordinate

of the image on the horizontal/vertical axis. P(i, j) and Q(i, j) mean the pixel values at the

coordinate (i, j). m and n are horizontal and vertical pixel size of P and Q, and MSE are

calculated between the corresponding pixels of P and Q. MAXP in Equation 1.5 is the maximum

possible value of the pixels of P, and PSNR can be calculated as the division of the MAXP by

the square of the MSE. The higher value of the PSNR indicates the better image quality. PSNR

is the evaluation value for the corruption from the original image, and thus the original image

is required for evaluation with PSNR.

Figure 1.4 shows the process for assessing SR capability using PSNR. The image at the left

of Figure 1.4 is an original HRI. The low-resolution image (at the center of Figure 1.4) is created

from the HRI by applying a low-pass-filter and down sampling. The LRI is also processed with

SR and HRI at the right of Figure 1.4 is reconstructed. SR capability can be measured by PSNR

between the original HRI and the reconstructed HRI. However, original HRI generally do not

exist in the practical situations and thus the PSNR assessment is not applicable.

For evaluating SR performance, it is possible to theoretically analyze resolution improve-

ment by comparing before and after SR processed signals in the frequency domain. Figure 1.5

shows examples of spectral analysis with the 2-dimensional discrete Fourier transform (2D-

DFT). Figure 1.5 (a) is an original image, and Figure 1.5 (b) is the blurred image of Figure 1.5

(a). Figure 1.5 (c) shows the 2D-DFT result for Figure 1.5 (a), and Figure 1.5 (d) shows the

2D-DFT result for Figure 1.5 (b). In the spectra, each point represents a particular frequency

11



(a) Original image (b) Blurred image

(c) 2D-DFT result of (a) (d) 2D-DFT result of (b)

Figure 1.5: Spectrum analysis with 2- dimensional Fourier transform (2D-DFT)

contained in the image. The center point of the spectra means the direct current component.

The further point from the center point is the higher frequency. By comparing with Figure 1.5

(c) and Figure 1.5 (d), it can be observed that the resolution of Figure 1.5 (a) and Figure 1.5 (b)

can be quantitatively assessed.

Objective assessments have a problem that the results do not reproduce subjective personal

opinions completely. PSNR has been criticized for not correlating with the perceived quality

measurements [31]. The examples of evaluation results with PSNR are shown in Figures 1.6-

1.8. Figure 1.6 is an original image and the Figure 1.7 shows a processed image of Figure

1.6 by drawing a line, and Figure 1.8 shows another processed image of Figure 1.6 by adding

Gaussian noise (where the average is 0, and the standard deviation is 4). The PSNR with Figure

1.6 and Figure 1.7 is 36.5199, and the PSNR with Figure 1.6 and Figure 1.8 is 36.5062, thus

the quantitative value is almost the same. However, the visual changes of Figure 1.7 and 1.8 are

different and it can be observed that the Figure 1.7 is more conspicuous visually for corrupting.

Other objective assessment designed to improve the inconsistencies of the human visual per-

12



Figure 1.6: Original image

Figure 1.7: Image with line (PSNR= 36.5199 dB)
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Figure 1.8: Image with Gaussian noise ( =4,PSNR=36.5062 dB)

ception with PSNR [32][33] and real-time objective assessment systems [34][35] are reported.

However, any objective assessment is not adaptable for assessing viewing systems with com-

mercial displays because they are black-box systems and we cannot take any processed signals

from the displays. Thus, the subjective assessment is the only way to evaluate the performance

of systems embedded in the displays.

Subjective assessments are used for various purposes, and there are numerous variety of sub-

jective assessment methods. ITU-R BT.500 [36] is one of the most common subjective assess-

ment methods and it is used for determining the bit rate for the HDTV broadcasting [37][38].

A recommendation described in ITU-T P.910 [39] is designed for assessing video quality of

multimedia applications, such as videophones. P.912 [40] is designed for assessing the quality

and the ability to recognize specific targets in surveillance videos, and ITU-R BT.1788 [41]

is designed for assessing quality of videos on various viewing environments such as mobile

phone and personal computer. All of the ITU methodologies aim to evaluate the effect of video

coding to subjective image quality, and these methods must use a single display during the as-

sessments. Whenever consumers buy display products at a store, they compare the qualities of

multiple displays. However, BT.500 cannot be used for product comparisons and there has been

14



no standard method for such an assessment.

TV or smartphone manufacturers are trying to develop new products competitively and

many products with the signal processing technologies are released. However, the quality of

the performance is usually unclear, and it requires further assessment to be conducted. How-

ever, BT.500 and other ITU methodologies cannot be used.

In Chapter 3, a subjective assessment for multiple displays, which is applicable to product

comparisons, is proposed. The assessment method is presented.

1.4 Super Resolution Image Reconstruction and Super Res-

olution with Nonlinear Signal Processing

Many 4K TV sets are now available on the market, and some of them are advertised that they

are equipped with super resolution (SR) technology as a feature. There are several types of

SR methods. Super resolution image reconstruction (SRR) and learning based super resolution

(LBSR) have been applied to TV sets. Recently, a novel SR with nonlinear signal processing

(NLSP) has also been proposed and the additional NLSP hardware for 4K/8K displays has been

released [8]. However, the actual visual capabilities of these SR performances on 4K TV sets

are unclear. Although SRR has been applied to 4K TV sets, there has been no guarantee for

improving resolution of TV content, as discussed in Chapter 2.

The capability of SR methods requires to be demonstrated subjectively since they are ulti-

mately determined by users’ impressions. In the related works, the subjective capability of the

4K TV set equipped with LBSR has been demonstrated [42][43]. However, the performance of

NLSP and SRR has not been verified. In Chapter 4, the proposed assessment method described

in Chapter 3 is applied for assessing quality of 4K TV sets with two different SR methods.

The practical ability of SRR on TV sets, as discussed in Chapter 2, is demonstrated with the

experiment.
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1.5 Super Resolution with Nonlinear Signal Processing for

Resolution Enhancement of 4K Videos

4K TV sets are currently available in the market, and some are equipped with the SR function.

Recently, SR technology that uses nonlinear signal processing (NLSP) and can work in real time

has been reported. Although conventional SR methods aim to improve resolution of enlarged,

blurred image, NLSP is also adaptable to images/videos without enlargement. However, the

performance of NLSP on 4K TV sets has not yet been prove. In Chapter 5, using the proposed

assessment method from Chapter 3, the subjective assessment was performed by comparing 4K

videos with and without NLSP on 4K TV sets. Assessment data was statistically analyzed, and

the ability of resolution improvement with NLSP on 4K TV sets was demonstrated.

1.6 Super Resolution for Smartphones

Smartphones are used for viewing videos and they can be a substitute for TV sets. For viewing

the videos, the quality of the videos is important and improving the quality is frequently re-

quired. One of the ways to improve resolution quality is super resolution (SR). In the previous

work, a smartphone with super resolution using nonlinear signal processing (NLSP) has been

released [44]. NLSP has been applied to TV sets and the ability of resolution improvement on

4K TV sets has been proven as described in Chapter 4 and Chapter 5, however, there has been

no guarantee for the NLSP to be effective on small smartphone displays. Many smartphones

equipped with image/video signal processing including SR are available; however, there is no

knowing how well they actually perform. In Chapter 6, the proposed assessment method from

Chapter 3 is also applied for assessing smartphone displays. The assessment was conducted by

comparing the video quality of smartphones with and without NLSP or different manufacturers’

smartphones. The resolution improvement of smartphone displays with NLSP is demonstrated.
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Chapter 2

Super Resolution Image Reconstruction

and Imaging Device

2.1 Introduction

Television (TV) set sales reached 25 million in 2010. In 2012, they decreased to eight million,

because the market was almost saturated. The prices of large liquid-crystal-display (LCD) TV

sets dropped significantly and TV manufacturers were at a turning point. They introduced

three-dimensional (3D) TV and 4,000 pixel-resolution (4K) TV to breathe some life into the

market. However, available content was insufficient. Although 3D film content is available, 3D

TV is unlikely to be successful. 4K satellite broadcasting has begun, and many 4K TV sets

are displayed in the best places in mass merchandise outlets. 4K TV is expected to become

the successor to high-definition television (HDTV), and the Ministry of Public Management,

Home Affairs, Posts and Telecommunications of Japan has released a road map illustrating the

anticipated future of the industry for Tokyo Olympic Games in 2020.

HDTV sets became available for sale after HDTV broadcasting began. Currently, 4K dis-

plays are already being sold and many homes have 4K TV sets, even before 4K broadcasting

has begun. Before 4K TV, TV manufacturers had actively sought broadcasting services and

had tried to develop the best TV sets for broadcasting. TV manufacturers had been trying to

improve broadcasting image quality to make it the best possible. However, 4K TV is differ-

ent. This time TV manufacturers are selling 4K TV sets ahead of the broadcasting services.

They have tried to promote the 4K TV, but 4K broadcasting service is limited. To compensate

for the lack of 4K content, attempts are being made to upgrade HDTV content to 4K reso-
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lution to enable it to work with 4K displays. The resolution of 4K is 3, 840 × 2, 160; thus,
the size of the HDTV content has to be doubled horizontally and vertically. However, enlarg-

ing an image always causes blurring. Some TV manufacturers have announced that their 4K

TV sets are equipped with super resolution (SR). However, they do not provide access to their

algorithms, except for super resolution image reconstruction (SRR). There are many papers

discussing SRR[2][3][4][5][6][21][22][23][24][25][26][27][28][29].

Farsiu and Robinson [2] proposed an SRR algorithm and reported its simulation results

for still images. They also showed the simulation results of eight-frame video and claimed

successful SRR. However, the images he used involved aliasing created from high-resolution

still images [26]. They used a special infrared video with aliasing, which was created with a still

camera that did not perform general camera operations such as panning and tilting, as we see

in TV and film content. SRR cannot be expected to work for general content[19][20][45][46].

There is no report claiming that SRR can improve resolution for TV or film video content that

has sufficient resolution without aliasing and that works with general camera operations.

In contrast, many SRR results for still images have been reported [2][3][4][5][6][23][24][26]

[27][28]. These reports have increased during this century and have been associated primarily

with newer imaging devices such as charge-coupled devices and complementary metal oxide

semiconductors.

One paper reported that SRR does not work for images that are enlarged twice for practical

applications [47], however, it provided no explanation. Baker and Kanade introduced the hal-

lucination algorithm to overcome the enlargement limitation of SRR [21]. Lin and Shum cited

their paper[21] and pointed out that no explicit limits were deduced in Baker’s paper [22]. Lin

and Shum demonstrated that, in general, the enlargement limitation of SRR was 1.6 and that

it could be as high as 5.6 in suitable conditions[22]. However, both papers[21][22] used a still

high-resolution image (HRI) as the original image and low-resolution images (LRIs) generated

from the original HRI. Therefore, they started from a point where the correct answer was known

to exist. In practical applications, we do not have an HRI and only the LRIs are given. Thus,

we need to create an HRI from the given LRIs. We do not know if the HRI will exist or if there

will be a correct answer for the SRR to converge to.

Another limitation of SRRwas reported by Tanaka and Okutomi. They theoretically demon-

strated the relationship between the limitations of SRR and the point spread function (PSF)[29].

In reference[29], they assumed that the shape of the aliasing in LRIs was a sinc function (S inc)
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and that the aliasing continued infinitely. However, they did not show evidence for these as-

sumptions.

SRR studies increasing the enlargement limitation of SRR are reported separately; however,

the relationship between them is still unclear. In reality, the performance of digital imaging

devices (CMOS and CCD) and the limitations of SRR are not connected in a manner that can

be explained theoretically. In this chapter the relationship between SRR and imaging devices is

analyzed, and the SRR enlargement limitation is investigated. The validity of the assumptions

in reference [29] is theoretically discussed.

2.2 SRR and Aliasing

2.2.1 Nyquist Sampling Theorem and Subsample

SRR has a deep relationship with aliasing, and LRIs must have aliasing. LRIs without alias-

ing cannot be used to reconstruct an HRI with SRR [48]. In this section, the relationship be-

tween SRR and aliasing is analyzed theoretically. To simplify the discussion, a simple one-

dimensional signal shown in Figure 2.1(a) is used as an example of HRI. f (t) is sampled with a

period of t = T , which is written as follows:

+∞∑
l=−∞

f (t)δ(t − lT ) (2.1)

where l is an integer. A 2:1 subsample is generally used to create LRIs. According to the

Nyquist sampling theorem, the bandwidth of the image must be limited to avoid causing alias-

ing. For a 2:1 subsample, the bandwidth is limited by a low-pass filter (LPF) to half the band-

width of the original image. The bandwidth limited f (t) with LPF is expressed as f̃ (t), and

Equation 2.1 becomes Equation 2.2.

+∞∑
l=−∞

f̃ (t)δ(t − lT ) (2.2)

After the 2:1 subsampling, Equation 2.2 becomes Equation 2.3.

+∞∑
l=−∞

f̃ (t)δ(t − 2lT ) (2.3)
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(c) Reconstructed image with SRR

Figure 2.1: Subsample and SRR time domain

According to the SRR study [2] and others using subsampled images as LRIs, the HRI shown

in Figure 2.1(c) can be reconstructed.

In this section, this signal processing process is analyzed with Figure 2.2 in the frequency

domain. The sampling frequency is ω0 = 2π/T . The Fourier transforms of f (t) and f̃ (t) are

defined with F(ω) and F̃(ω) respectively as follows.

∫ +∞

t=−∞

+∞∑
l=−∞

f (t)δ(t − lT )e− jωtdt

=

+∞∑
n=−∞

F(ω − nω0) (2.4)

∫ +∞

t=−∞

+∞∑
l=−∞

f̃ (t)δ(t − lT )e− jωtdt
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(b) Spectra processed with the appropriate LPF
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(c) Subsampled spectra with the appropriate LPF
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(d) Spectra of reconstructed image

Figure 2.2: Subsample without aliasing (frequency domain)

=

+∞∑
n=−∞

F̃(ω − nω0) (2.5)

Where j denotes imaginary number. The spectrum expressed with Equation 2.4 is shown in

Figure 2.2(a). In the SRR algorithm, the spectrum shown in Figure 2.2(a) is processed with LPF.

LPF limits the bandwidth of images and videos and the processed images and videos become

blurry. The LPF pre-processed image is f (t) (Equation 2.1) and the post-LPF processed image

is f̃ (t) (Equation 2.2). The sampling frequency of F(ω) is ω0 and the maximum frequency

elements of F(ω) are expected to be less than ω0/2. The frequency elements of F(ω) shown

in Figure 2.2(a) are expected to be less than ω0/4 for 2:1 subsampling with LPF. Figure 2.2(b)

21



�
�
�
�
�

�
� ���� �

���� �
�
� �

���� ��
�
�

��������	

� �
�

��
�

��
�

(a) Spectra processed with the imperfect LPF
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(b) Subsampled spectra with the imperfect LPF

Figure 2.3: Subsample with aliasing (frequency domain)

shows the band-limited spectrum of F̃(ω). The 2:1 subsampling result of Equation 2.5 is written

as Equation 2.6.

∫ +∞

t=−∞

+∞∑
l=−∞

f̃ (t)δ(t − 2lT )e− jωtdt

=

+∞∑
n=−∞

F̃(ω − nω0/2) (2.6)

The spectrum of Equation 2.6 is shown as Figure 2.2(c). Figure 2.2(c) has half the pixels of

Figures 2.2(a) and (b). Although Figure 2.2(c) is 1:2 interpolated to create the same number

of pixels, as in Figures 2.2(a) and (b), it actually becomes Figure 2.2(d) and has only half the

bandwidth of Figure 2.2(a). This means that the pixel number does not equal the resolution but

the bandwidth equals the resolution. There have been misunderstandings that the resolution of

HDTV increases when we see it with 4KTV. Although 4KTV has four times as many pixels as

HDTV, HDTV content on 4KTV has exactly the same resolution as HDTV. This also applies to

the relationship between Figures 2.2(a) and (d).

According to SRR studies, using many LRIs shown in Figure 2.2(c) enables the HRI shown

in Figure 2.2(a) to be reconstructed. However, as discussed in this section, this does not work.

LRIs are just LRIs, and it is impossible to reconstruct HRIs from LRIs. If it works, then HDTV

resolution can be used with blurry National Television System Committee standard videos.

However, LPF must be used as a prefilter when subsampling is conducted. This is the basic
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Figure 2.4: HRI Figure 2.5: Blurry LRI Figure 2.6: LRI with aliasing

theory in digital signal processing. Using an LPF with the Nyquist sampling theorem, we have

shown that SRR does not work.

SRR research is conducted widely throughout the world with new studies appearing fre-

quently [27][28]. The reason is very simple; these studies use LRIs with aliasing. If we begin

an SR study using LRIs with aliasing, many methods can be proposed using different forms

of aliasing to reduce the number of ways to combine LRIs’ pixels. Since redundant LRIs are

prepared for conducting SRR, many options are available. In Figure 2.2 the pre-filter limits the

bandwidth and aliasing did not occur by subsampling. This is the well-known Nyquist sampling

theorem. Figure 2.3 is an example that the Nyquist sampling theorem is not satisfied. Figure

2.3(a) shows the spectrum processed with a wide-band LPF, and Figure 2.3(b) shows the 2:1

subsampling result of Figure 2.3(a). The overlapped elements in Figure 2.3(b) indicate aliasing.

SRR uses the aliasing to reconstruct an HRI. Figure 2.4 is an example of an HRI. A generally

low-resolution for Figure 2.4 yields Figure 2.5. However, SRR cannot reconstruct HRI from

this type of low-resolution image. SRR requires LRIs with aliasing, as shown in Figure 2.6.

The aliasing shown in Figure 2.6 appears only when the bandwidth of the LPF prefilter does not

satisfy the Nyquist sampling theorem.

2.2.2 Still Image and Video

Although SRR was studied for still images, it was applied to videos [2][24]. Video frames were

used as LRIs to reconstruct an HRI. However, still images and video frames have completely

different properties. Figure 2.7 was taken with a digital camera, and Figure 2.8 was taken with

a video camera. The still image shown in Figure 2.7 does not have motion blur, whereas one

of the video frames as shown in Figure 2.8 has it. Motion blur occurs based on the movement
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Figure 2.7: Moving object (still camera)

Figure 2.8: Moving object (video camera)

of objects or cameras when it was shot. The shutter speed is an important parameter to control

the time length of exposure for the imaging device to light. The slower shutter speed causes

greater motion blur. General shutter speed of digital video cameras is 1/60 second, whereas that

of still digital cameras could be shorter than 1/500 second. Therefore, a large part of all video

content contains certain amount of motion blur, and aliasing does not naturally exist. We cannot

obtain LRIs with aliasing shown in Figure 2.6 from the video frames. It means that SRR cannot

increase the resolution of the general video content.

2.3 Essential Issue of SRR

In SRR studies, an HRI is prepared and processed with LPF, and LRIs are created with sub-

sampling. The created LRIs are processed with SRR, and an HRI is reconstructed. In actual

applications, only blurry LRIs are provided, and the HRI is not prepared. As discussed in the

previous section, SRR can be used to create an HRI only when LRIs with aliasing are provided,

and the reconstructed HRI is nothing more than the LRIs with the aliasing removed. In SRR
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Figure 2.9: HRI Figure 2.10: LRI Figure 2.11: Reconstructed HRI

studies, the LPF characteristics are not shown and wide-band LPFs are used to create aliasing.

The reconstructed HRI with SRR is compared with the original HRI and peak signal-to-noise

ratio (PSNR) values are compared with previous SRR studies.

The original HRI appears to be prepared to calculate PSNR, but the original HRI is, in

reality, prepared to create LRIs with aliasing. LRIs with aliasing are not sufficient for SRR to

work efficiently. Pixels of all LRIs must have different phases. SRR detects sub-pixel phase

differences in the pixels of LRIs and moves the pixels within sub-pixel precision to reduce

aliasing. This requires the pixels in LRIs to have sub-pixel differences. In practical situations,

it is necessary to move a camera with sub-pixel precision when we take LRIs for SRR. It is

almost impossible to take more than 16 images under this condition. Although sub-pixel LRIs

are prepared, there is no guarantee that an HRI will exist as a convergence image, because LRIs

are not created from a single HRI.

Preparing an HRI is the best and simplest method to overcome these difficulties. Processing

the prepared HRI with a wide-band LPF and creating LRIs with aliasing is sufficient. This

method has been tested in SRR studies; for example, one well-known study [2] on SRR uses the

well-known image Lena and a wide-band LPF to create LRIs with aliasing. Using Figure 2.9 as

the HRI, the 16 LRIs shown in Figure 2.10 are created. The subsample ratio in the process is 2:1

horizontal and vertical. Although four LRIs have the same amount of information as one HRI,

16 LRIs with four times more information than the HRI are required for SRR and more than 100

iterations are necessary to create an HRI [2]. Figure 2.11 is the HRI reconstructed with SRR.

If the HRI is completely reconstructed, then Figure 2.9 and Figure 2.11 with their frequency

characteristics are the same. However, their frequency characteristics will be different.

Figure 2.12 and Figure 2.13 are the two-dimensional Fourier transform (2D-FT) results of
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Figure 2.12: 2D-FT of Figure 2.9 Figure 2.13: 2D-FT of Figure 2.11

Figure2.9 and Figure 2.11, respectively. Comparing Figure 2.12 and Figure 2.13, frequency

characteristics are different. The spectrum in Figure 2.13 contains null areas that do not appear

in Figure 2.12. These null areas are caused by the 2:1 subsampling when the HRI is created

from LRIs. If the size of the LRIs is one quarter, the null areas appear in the half frequency of

those areas horizontally and vertically [46] [49].

The null areas depend on the subsample ratio. The original and reconstructed HRIs appear

to be identical only when we compare them visually. However, analyzing them in the frequency

domain reveals that the reconstruction is not complete. This paper uses the SRR algorithm

from the study [2]. However, other SRR proposals involve the same problems, because they are

connected to essential SRR algorithms.

2.4 Imaging Device

As discussed in the previous section, the Nyquist sampling theorem requires LPF intended

for subsampling to be designed not to cause aliasing. Subsampling must be conducted after

LPF processing. However, SRR studies have used wide-band LPFs and LRIs with aliasing

for processing with SRR. An HRI can be reconstructed by reducing aliasing in the LRIs and

combining them.

Although film (silver salt) cameras have long been widely used, they have most recently

been replaced with digital cameras. Images shot with film cameras do not have aliasing. When

SRR studies use images captured with film cameras, they create LRIs with aliasing, wide-

band LPFs, and subsampling [2]. Images captured with a digital camera also can have aliasing
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Figure 2.14: Imaging device

[50]. Imaging devices for photoelectric conversion consist of cells shown in Figure 2.14. The

ideal condition of photoelectric conversion is that the photoelectric cells are small and have the

same characteristics as the δ function. In engineering technology, it is impossible to develop

an infinitely small photoelectric conversion cell. Photoelectric cells with finite sizes and areas

have the aperture effect, and the high frequency elements are attenuated in inverse proportion to

the size of the photoelectric imaging cells.

Figure 2.14 is a model of a photoelectric device that hasm×n cells. The size of cells is a×b,
and that of an imaging sensor is A× B. The horizontal sampling frequency is m and the vertical

sampling frequency is n. The horizontal axis is μ and the vertical axis is ν. The horizontal and

the vertical fill factors are ma
A and nb

B respectively. The aperture effect of the finite cell is given

by Equation 2.7.

S inc
(
ma
A
(
1
m
μ)

)
S inc

(
nb
B
(
1
n
ν)

)
(2.7)

There are spaces between cells in Figure 2.14. The fill factor becomes 100% when the cells are

fully tiled and no space remains [51][52][53][54][55][56].

The amount of input to each cell increases in proportion to the fill factor, and it becomes

possible to image in dark areas. Currently, the fill factor of imaging devices equipped with

commercial digital cameras is almost 100%. In contrast, the aperture effect becomes notice-
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able in proportion to the increases of the fill factor, and high frequency elements are attenuated.

When the fill factor becomes 100%, A = ma, B = nb holds. When the sampling frequencies

μ = m and ν = n are substituted into Equation 2.7, the responses are null. The high-frequency

elements are also attenuated. These phenomena are caused by the aperture factor. The fill fac-

tor was 15% − 41%[51][52][53] and became 50% in 2006[54]. Recently it was improved to

100% [55][56]. The theoretical analysis given by Tanaka and Okutomi[29] used Equation 2.7.

However, they did not elucidate the effect of the shape of the sinc function on the frequency

characteristics of aliasing. The aliasing frequency characteristics affect the quality of the re-

constructed HRI. As a result, the resolution of HRI is affected by the fill factor of the imaging

device. This discussion theoretically explains the relationship between the reconstructed HRI

by SRR and the fill factor of the imaging devices. This point has not been mentioned previously.

Here we assume that the fill factors of the current imaging devices are 50%-90%. When

the fill factor is 50%, the frequency characteristics become zero at double the sampling fre-

quency. When it is 90%, the frequency characteristics become zero at the sampling frequency

×1.1. These considerations show that there are higher frequency elements than the sampling

frequency if the fill factor is less than 100%. This means that aliasing exists as aliasing in the

images created with the fill factors [57]. Recent imaging devices have a high percentage of

fill factors to cope with poor lighting conditions. However, at the beginning of the century,

these were lower than the current ones. If the fill factor was close to 50%, the images have

the frequency elements up to double of the sampling frequency. In this case, SRR can create

elements of twice higher frequency than the sampling frequency. However, the relation between

the fill factor and aliasing explains that images created with low fill factor imaging devices have

aliasing that can be used with high frequency elements to improve resolution with SRR. In this

century, imaging devices have advanced and digital cameras are equipped with those devices.

Early generation digital cameras were equipped with low fill factor imaging devices, with the

result that images with aliasing became widespread. SRR research began in this environment,

because there were so many images with aliasing. Efforts to increase the fill factor of photo

imaging devices have continued and enabled the production of high fill factor imaging devices

to cope with poor lighting conditions [58]. This narrows the application fields of SRR, because

images created with high fill factor imaging devices have less aliasing.
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(a) (b)

Figure 2.15: LRI for SRR [2][24]

(a) (b)

Figure 2.16: Reconstructed HRI[2] [24]

2.5 Block Shaped Aliasing

The references [2][24] reported SRR for video. Several frames of the videos are used as LRIs

and HRI is reconstructed using SRR. Figure 2.15(a), (b) are the LRIs, and Fig.2.16(a), (b) show

the SRR processed results. Comparing Figure 2.15 (a) with Figure 2.16 (a), and Figure 2.15

(b) with Figure 2.16 (b), respectively, shows that resolution is improved with SRR. However,

the resolution of the videos used in the studies was very low, and they have block shapes as

their imaging cells, as shown in Figure 2.15. These block shapes are the result of aliasing. SRR

studies [2] and [24] use LRIs created with low-resolution images to include aliasing. Using

several frames as LRIs, they call aliasing-reduced images HRIs. These videos are created with

still cameras and do not involve camera work such as panning and tilting, which general TV and

cinema content has. If videos include such camera work, it becomes difficult to reduce aliasing,

because quarter-pixel accuracy motion vector detection is necessary for SRR processing. These

considerations show that SRR for videos just reduces aliasing, as in the case with SRR for still

images, and SRR cannot create higher-resolutions than those of the LRIs used to create them.
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Despite the large amount of available video content, there have been no low-resolution

videos such as those shown in Figure2.15 (a) or (b) in broadcasting, cinema, digital video disc,

or Blu-ray disc content. They have much higher-resolution than Figures 2.15. Improving unus-

able low-resolution videos to a somewhat higher-resolution SRR is not a practical technology

for general videos.

Figure 2.16 does not have block-shaped aliasing. Using figures of comparable quality as

LRIs for SRR is considered to be capable of improving resolution, because aliasing in these

images has been removed. Although commercial HDTV equipped with SRR is available, its

resolution is not as good as that of HDTV sets without any type of SR technologies [45]. Sub-

jective assessments for 4K TV have been conducted [59] with results reported similar to those

arrived here [45]. This fact is consistent with the discussion in this chapter regarding the in-

ability of SRR to improve the resolution of HDTV content, as a consequence of not having

block-shaped aliasing. The interlace artifact is the only aliasing in HDTV content. SRR can

be used to reduce interlace aliasing. However, it has been shown that interlace aliasing can

be removed using inter-field signal processing, as with motion vectors [60]. Inter-field signal

processing with motion vectors is a much more concise method than SRR.

2.6 Conclusions

The relationship between imaging device and aliasing was discussed, and the limitations of SRR

were examined theoretically. SRR is one of the most common and popular SR technologies,

and many studies of it have been proposed. However, SRR just removes aliasing in LRIs. If an

HRI is prepared, it can be used without any processing. Creating LRIs from an HRI and then

reconstructing the HRI is of no use. Reconstructing an HRI with SRR is similar to assembling

the parts of a jigsaw puzzle. In practical applications, only one LRI is given. It is required to

create an HRI from the LRI; it is not possible to do so using SRR.
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Chapter 3

Subjective Assessment Method for

Multiple Displays with Super Resolution

3.1 Introduction

Digital high-definition television (HDTV) broadcasting has begun, and home-use television

(TV) displays have evolved from cathode-ray tubes to liquid crystal displays. In 2011, 4K TV

sets, which have four times the resolution (3,840 × 2,160) of HDTV (1,920 × 1,080), were

introduced in the market, and in 2014, 4K satellite broadcasting started in Japan. However,

4K video content is still not widespread, resulting in the release of 4K TV sets ahead of the

4K broadcasting. Almost all TV content available currently is in HDTV, and thus, format

conversion is necessary to play conventional HDTV content on 4K TV sets. However, enlarging

an image causes blurring.

To improve image/video quality, almost all TV sets are equipped with signal processing

technologies such as an enhancer. However, the enhancer only enhances the edges of an im-

age and cannot actually improve resolution. Super-resolution (SR) technology is one way to

increase resolution. 4K TV sets equipped with SR have been released by some manufacturers.

A popular SR method is super-resolution image reconstruction (SRR), which uses multi-

ple low-resolution images to reconstruct a high-resolution image [2]. Although 4K TV sets

equipped with SRR are available, the inability of SRR to improve the resolution of the TV

content has been discussed [61]. Note that SR is a catchphrase used in TV marketing, and the

performance of SR on TV sets is not guaranteed.

Although the assessment of SR performance on TV sets is required, there is no method for
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such an assessment at present. The simplest evaluation of SR is signal analysis, which is a

comparison of the signals with and without SR in the frequency domain However, there is no

way to measure the signals after the SR processing on the TV sets. As signal analysis cannot

be used, a subjective assessment is the only way to evaluate the performance of SR embedded

in video devices.

There are various TV sets equipped with signal processing technologies including SR by

different manufacturers. Consumers compare these products when they purchase a TV set.

Although image quality is frequently considered in the decision, there is no way for consumers

to evaluate the relative merits of image quality between the products. A standardized assessment

methodology for television video quality is described in BT.500 [36]. However, BT.500 is not

adaptable for assessing multiple displays leading to a product comparison. In other method,

a paired comparison [62], was applied to image quality assessments [63], and also applied to

assess different display panels [64]; however, these assessments are for still-images. The typical

use for TV sets is video appreciation. The usefulness of the method for video assessments on

multiple displays has not been verified. The purpose of this study is to propose an assessment

method for multiple displays enabling to obtain consumers’ subjective impressions. In this

chapter, the methodology of the proposed assessment method is presented.

3.2 Subjective Assessment

Subjective image quality is a psychophysical quantification of how a viewer perceives images

and videos. Human perceptions vary individually. Thus, statistical analysis is essential to vali-

date the reproducibility of psychophysical quantity measurements. Statistical analysis is based

on the assumption that the evaluations for each sample follow different Gaussian distributions

if there is a difference in the image qualities of the stimuli. Hypothesis tests, such as t-tests and

F-tests, assess the error probability that an observation difference in samples is just the result of

random noise. If the error probability is significantly low, then a significant difference between

the samples is observed, and this indicates a reproducible result. Thus, significant differences

must be detectable because the result without them makes no sense. Note that psychophysical

quantities are susceptible to various factors, and we must carefully select the assessment method

and experimental conditions to obtain reproducible measurements.

One of the most common subjective assessment tools is BT.500 [36]. BT.500 is useful in
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evaluating the relationship between subjective image quality and bitrate of the image coding.

However, BT.500 assessments must use a single display to present assessment videos, and it

is not directly adaptable for multiple display assessments. A paired comparison method and

ranking method are commonly used for sensory evaluation and it is adaptable to multiple display

assessments involving simultaneous comparisons. The ranking method is a comparison of all

samples, whereas the paired comparison is that of every pair of samples. The ranking method is

inferior to the paired comparison method with respect to the sensitivity of the assessment [71].

In this study, the paired comparison method is combined with some of the BT.500 experimental

conditions, such as the eligibilities of test sequences and observers. The proposed method copes

with the inadaptability of BT.500 assessments to multiple display assessments.

3.3 Proposed Method

3.3.1 Scheffe’s Paired Comparison

A paired comparison method is a round-robin paired comparison that helps in obtaining a statis-

tical order for image quality. Several paired comparison methods have been reported [62][65]:

Thurstone’s method [65] assesses the superiorities of pairs, whereas Scheffe’s method [62] as-

sesses the degrees of their superiorities. In this study, Scheffe’s method is selected because it

can obtain more detailed information for an assessment than Thurstone’s method.

The process of Scheffe’s paired comparison method is as follows. Using a pair of target and

reference samples, observers score their quality on a five-grade scale from -2 to +2 (+2: Excel-

lent, +1: Good, 0: Even, -1: Poor, -2: Bad). The same assessments are repeated for all pairs

of samples. Figure 3.1 shows the actual experiment using the paired comparison method. The

observer compares the quality of multiple displays placed together. This situation reproduces

an environment in which shoppers compare multiple items at a store.

3.3.2 Observers and Test Sequences

BT.500 specifies that observers must be non-experts who do not work in the video industry and

have normal visual acuity and color vision. Moreover, the number of observers must be at least

15. The proposed method adopts these conditions.
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Figure 3.1: Paired comparison

BT.500 specifies that each test sequence used in the assessment must last for 10-15 s and at

least four test sequences must be used. The proposed method also adopts these specifications.

Although BT.500 does not specify assessment areas, it is not easy for non-expert observers to

recognize the difference in quality. To stabilize the observers’ decisions, the proposed method

specifies assessment areas that make it easier to assess image quality in each of the test se-

quences.

3.3.3 Experimental Environments

A training session is conducted in advance to explain the meaning of high- and low-quality

images and the experimental method to observers. The experimental process and evaluation

points are effectively explained to observers using a dummy test sequence. The test sequence

is repeated for each display during the assessment. There is no time limit for the assessment.

The observers can freely move to the front of each display and view the test sequences to decide

on their opinion. BT.500 specifies an observation angle of ±30◦ from the front of the screen.

The proposed method maintains this angle, and the observers are asked to view the videos

from the front of the display. A viewing distance of three times the display height is specified

in BT.500; however, the appropriate viewing distances vary for individuals according to their

visual acuity. In the proposed method, observers can freely select their viewing distance during

the assessment.
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Chapter 4

Subjective Assessment of 4K TV Set with

Super Resolution Image Reconstruction

4.1 Introduction

At present, 4K TV sets are available on the market. However, 4K video content is still not

sufficient: almost all TV content is in high-definition television broadcasting (HDTV). Images

/videos with insufficient resolution are up-converted to the resolution of the display. However,

enlarging an image always causes blurring.

Enhancer (or unsharp mask) [1] is one way to improve quality of the image/video in reso-

lution. This method has simple algorithm and it is easy to enhance images and videos in real

time: however, enhancer cannot actually improve resolution because it can only enhance the

edges of the image/video.

Super resolution is another way to improve resolution. There are some types of SR method.

Super resolution image reconstruction (SRR) is the most popular SR method and this method

has been applied to TV sets. However, actual performance of TV sets with SRR has been

unclear as none of them has solid evidence.

The image quality of displays is one of the important factors affecting the consumers’ pur-

chase judgements. There are many TV sets available and they are equipped with signal process-

ing technologies including SR. However, actual performance of SR on TV sets has not become

clear.

In this chapter, subjective assessments of TV sets with different SR methods are conducted

by using the proposed assessment method described in Chapter 3. In authors’ related works
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an SR method [7] with nonlinear signal processing (NLSP) was proposed. The performances

in resolution quality of NLSP and SRR are assessed, the discussion of SRR in Chapter 2 are

proved by the experiments.

4.2 Subjective Assessment Experiments

Subjective assessment experiments are conducted to verify the ability of different SR methods.

The stimuli are the 4K (3,840 × 2,160) signals up-converted from a HDTV (1,920 × 1,080) sig-
nal by three methods: NLSP, SRR, and the Lanczos filter [66], which is a common interpolation

algorithm.

4.2.1 Experiments

Two experiments were conducted to consider the effect of different display panels. The stimuli

are the 4K signals up-converted from a 2K (1, 920 × 1, 080) signal by three methods: NLSP,
SRR, and the Lanczos filter [66], which is a common interpolation algorithm.

Experiment 1 uses two consumer-grade 4K TV sets, as shown in Figure 4.1, and experiment

2 uses the 4K TV set shown in Figure 4.1 and a professional 4K display, shown in Figure

4.2. The 4K TV set shown in Figure 4.1 is equipped with SRR and implements it when the

resolution of an input signal is less than that of its display resolution (4K), but it does not work

with the same resolution. The system diagrams for two experiments are shown in Figures 4.4

and 4.5, respectively. They are the same experiment except for the types of display devices.

The solid arrow indicates the process for presenting the NLSP or original video signal. The

dashed arrow indicates the process for presenting the SRR video signal. The video player

outputs a video signal with 2K resolution. For the NLSP process, the 2K signal is input to the

NLSP hardware and is first up-converted to 4K using the Lanczos filter. Then, the NLSP is

implemented with the SR processing on the hardware enabled (ON). If this setting is disabled

(OFF), the unprocessed 4K signal is output. The output signal is either displayed through the

4K TV set or the professional 4K display. For the SRR process, the original 2K signal is directly

input to the 4K TV set. The signal is then up-converted to 4K by the SRR embedded in the 4K

TV set and displayed through the 4K TV set.
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Table 4.1: Rating scale
Score Description
2 Excellent
1 Good
0 Even
-1 Poor
-2 Bad

4.2.2 Assessment Method

Scheffe’s paired comparison method was used for the assessment. Using a pair of 4K TV sets,

observers scored the TV sets on a 5-grade scale (-2 to +2). The results of the assessment

were statistically analyzed using analysis of variance. Prior to the experiment, we conducted

a training session to explain resolution and the experimental method to each observer. The

observers were asked to assess only resolution and ignore other factors, such as noise and color.

4.2.3 Experimental Set Up and Environments

Thirty non-expert observers participated in the experiments. The observers assessed image

quality using the five-grade scale from -2 to +2. They were asked to assess resolution only.

Other quality factors, such as noise and color, were not considered in the assessment. Five

test sequences were used in each experiment: the 4K test sequences shown in Figure 3.2 were

used in experiment 1, and the 2K test sequences shown in Figure 3.3 were used in experiment

2. These sequences do not include pan and tilt scenes. The assessment areas indicated by

ovals in Figures 3.2 and 3.3 were specified. These areas have high-resolution elements and are

appropriate for recognizing resolution differences.

4.3 Results and Discussions

The analysis process is described by following the results for the “Ruins” sequence. Here, the

stimuli for experiments are the processed signal with NLSP (NLSP), the processed signal with

SRR (SRR), and the processed signal with Lanczos method (Lanczos).

37



Figure 4.1: 4K TV

Figure 4.2: 4K display

Figure 4.3: NLSP hardware

4.3.1 Experiment 1

Table 4.2 is the cross table for the “Ruins” sequence. Row i indicates the reference stimulus for

comparison, and column j indicates the target stimulus. The values in Table 4.2 are the sums

of the assessment scores for all observers. Further, Xi and Xj represent the sums of each row

and column, Xj − Xi is the difference of Xj and Xi, and X... represents the total of each row or

column.
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Figure 4.4: Experiment 1
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Figure 4.5: Experiment 2

Here, analysis of variance (ANOVA) was used to assess the significant differences in the

assessment scores of the stimuli. The ANOVA results for the “Ruins” sequence are shown in

Table 4.3. The sum of squares, degrees of freedom, and mean squares were calculated for each

factor [67]. The F0 score is a statistical value for the F-test, and it is obtained by dividing

the mean square of a specific factor and that of the residual factor. Further, F1% is a critical F

value for the 1% significance level. If F0 of the stimuli factor is greater than F1%, there is a
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(1) Ruins (2) Bricks

(3) Plaza (4) Castle

(5) Cathedral

Figure 4.6: 2K test sequences

significant difference in the assessment scores of stimuli. Here, F0 of the stimuli factor is F0 =

582.96 > F1% = 4.881. Thus, a 1% significant difference between the stimuli is observed. All

the ANOVA results for other test sequences are the same in that there are significant differences

for the stimuli factor.

The meanings of the statistical differences in each factor are as bellow: The statistical differ-

ence in the “Stimuli” factor means the difference between the stimuli. The statistical difference

in the “Combination” factor means the difference between specific combination of the stimuli.

The statistical difference in the “Order” factor means the difference between the order of the

stimuli with the reference and the target. The statistical differences in the “Stimuli/Order ×
Observers” factors mean the differences of “Stimuli”/”Order” factors among individuals.
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Table 4.2: Cross table (Experiment 1 Ruins)
������i

j Lanczos NLSP SRR Xi

Lanczos – 55 8 63
NLSP -42 – -39 -81
SRR 9 56 – 65
Xj -33 111 -31 X...

Xj − Xi -96 192 -96 47

Table 4.3: Analysis of variance (Experiment 1 Ruins)
Factor Sum of squares Degree of freedom Mean square F0 F1%
Stimuli 307.20 2 153.60 582.96∗∗ 4.881

Stimuli×Observers 39.47 58 0.68 2.58∗∗ 1.746
Combination 0.05 1 0.05 0.19 6.963

Order 12.27 1 12.27 46.58∗∗ 6.963
Order×Observers 8.56 29 0.30 1.12 1.944

Residual 23.45 89 0.26 – –
Overall result 391.00 180 2.17 – –

**: 1% significant difference (F0 > F1%)

The significant differences in each pair of stimuli were assessed because the ANOVA results

guarantee the significant differences of least one of the pairs of stimuli. The yardstick values

α for each stimulus are calculated by (Xj − Xi)/(2Nn), where n is the number of observers
(30) and N is the number of stimuli (3). The yardstick values for the “Ruins” sequence are

shown in Figure 4.7. In Figure 4.7, the horizontal axis is the yardstick value, and the marks

(rhombus, square, and triangle) show the values of each stimulus. Higher values indicate higher

assessment. The values on the arrows show the differences between the stimuli. A critical value

of the difference in yardstick values with significance level a is calculated as follows:

Ya = q
√
Vε
2nN

(4.1)

where Vε is the mean square of the residual factor (0.26), as shown in Table 4.3. Further, q is

obtained from the Student’s t-distribution with the degrees of freedom for the residual factor

(89) and number of stimuli N (3). Let significance level be 0.01. Then q = 4.282, and thus,

Y0.01 = 0.164. If the difference in yardstick values is greater than Y0.01, there is a significant

difference between the yardstick values. In the results of the “Ruins” sequence, the yardstick

values in Figure 4.7 are the highest for NLSP, SRR, and Lanczos, in that order. The differences
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(5) Cathedral

Figure 4.7: Assessment results (Experiment 1)

**: 1% significant difference

in the yardstick values of adjacent stimuli, NLSP with SRR (αNLS P − αSRR), and SRR with

Lanczos (αSRR − αLanczos) are as follows:

αNLS P − αSRR = 1.60 > Y0.01 (4.2)

αSRR − αLanczos = 0.00 < Y0.01 (4.3)

Because αNLS P − αSRR is greater than Y0.01, a 1% significant difference between NLSP and

SRR is observed. The value of αSRR − αLanczos is not greater than Y0.01, and thus, a significant
difference between SRR and Lanczos is not guaranteed. The asterisks (**) in Figure 4.7 indicate

1% significant differences between the stimuli. The yardstick values for other test sequences
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Table 4.4: Cross table (Experiment 2 Ruins)
������i

j Lanczos NLSP SRR Xi

Lanczos – 52 5 57
NLSP -44 – -38 -82
SRR 6 48 – 54
Xj -38 100 -33 X...

Xj − Xi -95 182 -87 29

Table 4.5: Analysis of variance (Experiment 2 Ruins)
Factor Sum of squares Degree of freedom Mean square F0 F1%
Stimuli 276.21 2 138.11 652.83∗∗ 4.881

Stimuli×Observers 52.12 58 0.90 4.25∗∗ 1.746
Combination 0.67 1 0.67 3.18 6.963

Order 4.67 1 4.67 22.09∗∗ 6.963
Order×Observers 10.49 29 0.36 1.71 1.944

Residual 18.83 89 0.21 – –
Overall result 363.00 180 2.02 – –

**: 1% significant difference (F0 > F1%)

are shown in Figures 4.7 (2)-(5). All results have similar tendencies; NLSP has the highest

evaluation, and there are significant differences between NLSP and SRR as well as NLSP and

Lanczos in all cases. Significant differences between SRR and Lanczos are obtained for “Plaza”,

shown in Figure 4.7 (3), “Castle”, shown in Figure 4.7 (4), and “Cathedral” shown in Figure

4.7 (5).

4.3.2 Experiment 2

The results of experiment 2 were analyzed in the same way as those of experiment 1. The

cross table for the “Ruins” sequence is shown in Table 4.4, and the ANOVA results for the

“Ruins” sequence is shown in Table 4.5. As the ANOVA results, the F0 for the stimuli factor

is F0 = 652.3 > F1% = 4.881. Thus, the 1% significant difference between the stimuli is

observed. The 1% significant difference in the stimuli factor is detected in all test sequences.

The yardstick values for the “Ruins” sequences are shown in Figure 4.8 (1). The yardstick

values are high in the order of NLSP, SRR, and Lanczos. The difference in the yardstick values
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(5) Cathedral

Figure 4.8: Assessment results (Experiment 2)

**: 1% significant difference

of adjacent stimuli, αNLS P − αSRR and αSRR − αLanczos are as follows.

αNLS P − αSRR = 1.49 > Y0.01 (4.4)

αSRR − αLanczos = 0.04 < Y0.01 (4.5)

Equitation 4.4 satisfies (αNLS P − αSRR) > Y0.01, and Equiation 4.5 does not satisfy (αSRR −
αLanczos) > Y0.01. There is the 1% significant difference between the NLSP and SRR. The

significant difference between SRR and Lanczos is not observed. Figures 4.8 (2)-(5) show

the results of yardstick values for each test sequence. All the results are similar to those of

experiment 2: The yardstick values of NLSP are the highest of all stimuli, and the significant
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differences are revealed between NLSP and the other two stimuli, SRR and Lanczos. Significant

differences between SRR and Lanczos are obtained for “Bricks” shown in Figure 4.8 (2), and

“Castle” shown in Figure 4.8 (4).

4.3.3 Discussions

As the results of experiments 1 and 2, the yardstick value of NLSP is highest. The significant

differences of NLSP and other two methods, SRR, and Lanczos, are observed. The superiority

of NLSP is proven from the results of two experiments with the same and different displays.

Contrarily, the quality differences between SRR and Lanczos are observed in only five re-

sults of the all ten results. The quality differences between SRR and Lanczos are too small to

guarantee because they depend on the display and sequence. The essential limits of the ability

of SRR to improve the resolution of the TV content were discussed in Chapter 2, and the results

of the experiments are consistent with these discussions.

The yardstick values for each stimulus are asymmetrically distributed, and the statistical

differences for the order factor are obtained in four cases with experiment 1, and in three cases

with experiment 2. It is assumed the sensitivities how good/ bad for resolution with the Scheffe’s

paired comparison are not the same: The results also show that the assessments of both, combi-

nation of stimuli with target and reference should be measured.

4.4 Conclusions

Subjective assessment experiments of 4K displays with NLSP and SRR were conducted to con-

firm practical performance of SRR on TV sets. As the results, the ability of SRR is inferior

to NLSP in resolution quality, and the quality difference between SRR and the previous Lanc-

zos method is obtained in some specific results only. The calculation cost for SRR is higher

than NLSP or Lanczos, as it requires time-consuming iterations to reconstruct a high-resolution

image. There is no particular advantage of applying SRR to TV sets.
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Chapter 5

Subjective Assessment of 4K videos with

super resolution with nonlinear signal

processing

5.1 Introduction

4K TV sets are currently available on the market. They provide high quality images with

quadruple the resolution of HD. However, although 4K TV sets are widely available, 4K video

content is not; up-converted HD video content is still used with 4K TV sets.

Image enlargement is required to display low-resolution images on high-resolution displays.

Note that enlarging of an image causes blurring. Thus, image resolution should be improved,

and almost all consumer TV sets are equipped with a sharpness function (i.e., an enhancer or an

unsharp mask). The sharpness function algorithm is simple and can work in real time; thus, it is

widely used for video devices. However, the sharpness function can enhance edges but cannot

actually improve resolution.

Super-resolution (SR) technology is a method for improving the resolution of images. Un-

like the sharpness function, SR can reproduce high frequency spectra that the sharpness function

cannot create.

While the capabilities of SR technologies for TV sets need to be improved, the evaluation of

SR technology is also required. It is possible to theoretically analyze resolution by comparing

SR and non-SR processed video signals. However, there is no way to take the video signals
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after the SR signal process from the TV sets. Thus, a subjective assessment is the only way to

evaluate the image qualities of SR technologies embedded in video devices.

Our team has proposed a new SR technology using nonlinear signal processing (NLSP), and

its theoretical capability has been proven [7][8]. In addition, we have demonstrated improved

subjective image quality in 4K videos up-converted from HD [59] as described in Chapter 4.

NLSP can enhance images without enlargement. However, the high-resolution effect has not

been tested. In this chapter, the high-resolution effect of NLSP is verified. We perform a

subjective assessment wherein candidates are 4K videos with and without NLSP.

5.2 Experiment

5.2.1 Subjective Assessment Method

The assessment was conducted by comparing 4K videos with and without NLSP. Two consumer

grade 4K TV sets of the same model were used. The same 4K TV sets used for the experiment

in Chapter 4 (shown in Figure 4.1) were used. Observers watched the TVs and compared the

image resolution qualities. This was intended to reproduce the conditions by which shoppers

compare similar items at a store.

As with the experiments described in Chapter 4, Scheffe’s paired comparison method was

used for the assessment. A training session was conducted to explain resolution and the ex-

perimental method to observers. The observers assessed only resolution. The other evaluation

factors, such as noise and color were not considered in the assessment.

5.2.2 Apparatus

A system diagram of the experiment is shown in Figure 5.1. A 4K video player was used to

show video sequences to the observers, and a video signal was simultaneously distributed to

each 4K TV set. In the process for original, the original video signal was output to the 4K

TV set without any processing. In the process for NLSP, external NLSP hardware used in the

experiment in Chapter 4 (shown in Figure 4.3 was connected between the video player and one

of the 4K TV sets. Then, the output signal after NLSP was displayed on the 4K TV.
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Figure 5.1: Experiment

5.2.3 Test Sequences

Test video sequences for the experiment were taken by a consumer video camera. The resolution

is 4K (3,840 × 2,160), and the format is MPEG-4. Five test video sequences that are appropriate

for the assessment of resolution were selected. Most did not included pan and tilt scenes. The

length of each test sequence is between 10 s and 15 s in reference to BT.500. Figure 5.2 shows

the test video sequences for the experiment. The ovals on the figures indicate high-resolution

areas. The observers were asked to watch these areas and determine assessment scores.

5.2.4 Observers

Thirty observers participated in the experiment. The observers are non-experts, and they have

normal visual acuity and color vision in reference to BT.500.

5.2.5 Experimental Conditions

Normal lighting conditions for a room were selected for the experiment to reproduce a viewing

environment in which consumers choose a TV set at a store. The observers could freely change

their viewing distance during the assessment.
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(1) Cherry tree (2) Bus

(3) Cruise ship 1 (4) Cruise ship 2

(5) Red brick

Figure 5.2: 4K test sequences

5.3 Results and Discussion

The assessment results for the “Cherry Tree” sequence are shown in Figure 5.3. Figure 5.3

shows a graph of the average scores and the standard deviations of each stimulus. Here, “NLSP”

indicates stimulus of the process for NLSP, and “Original” indicates stimulus of the process

without NLSP. The horizontal axis is the average scores. The average scores were obtained by

dividing the total assessment scores by the number of observers. The bars extending from the

marks are standard deviations. The graph shows that the average score for NLSP is 1.73 and

that of original is -1.27. Note that the average score for NLSP is higher than that of original.

Other assessment results are shown in Figures 5.4, 5.5, 5.6, and 5.7. All results demonstrate
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Figure 5.3: Assessment result (Cherry tree)
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Figure 5.4: Assessment result (Bus)
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Figure 5.5: Assessment result (Cruise ship 1)
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Figure 5.6: Assessment result (Cruise ship 2)
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Figure 5.7: Assessment result (Red brick)

similar tendencies.

Analysis of variance was used to assess significant differences. The results of the analysis

of variance for the “Cherry Tree” sequence are shown in Table 5.1. Table 5.1 shows the sum of

squares, degrees of freedom, and mean square values [67]. F0 denotes a value for an F-test. F0

is obtained by the quotient of the mean square of the stimuli and that of the residual. Here, a

critical F value for the 0.01 significance level is F1% = 7.093. If F0 is greater than F1%, then the

null hypothesis was rejected and there is significant difference between the stimuli. F0 for the

“Cherry Tree” sequence is F0 = 667.330 > F1%. Similarly, other analysis of variance results

for other sequences are shown in Tables 5.2, 5.3, 5.4, and 5.5.

All results satisfy F0 > F1%, and significant differences between the stimuli are observed. As
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Table 5.1: Analysis of variance (Cherry tree)
Factor Sum of squares Degree of freedom Mean square F0
Stimuli 135.000 1 135.000 667.330**
Residual 11.733 58 0.202 –

Overall result 146.733 59 – –

Table 5.2: Analysis of variance (Bus)
Factor Sum of squares Degree of freedom Mean square F0
Stimuli 117.600 1 117.600 475.870**
Residual 14.333 58 0.247 –

Overall result 131.933 59 – –

Table 5.3: Analysis of variance (Cruise ship 1)
Factor Sum of squares Degree of freedom Mean square F0
Stimuli 112.067 1 112.067 367.917**
Residual 17.667 58 0.305 –

Overall result 129.733 59 – –

Table 5.4: Analysis of variance (Cruise ship 2)
Factor Sum of squares Degree of freedom Mean square F0
Stimuli 135.000 1 135.000 441.541**
Residual 17.733 58 0.306 –

Overall result 152.733 59 – –

Table 5.5: Analysis of variance (Red brick)
Factor Sum of squares Degree of freedom Mean square F0
Stimuli 98.817 1 98.817 204.448**
Residual 28.033 58 0.483 –

Overall result 126.850 59 – –

**: 1% significant difference (F0 > F1%), F1% = 7.093

a result, NLSP stimuli have higher average scores than original. In addition, the 0.01 significant

differences were detected in all test sequences. Thus, it is statistically proven that video signals

with NLSP obviously differ from the original video signals, and the image resolution quality of

NLSP is superior. It is assumed that similar results would be obtained for other video sequences

because the experimental method is reproducible. These results prove that NLSP can effectively

enhance images.
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5.4 Conclusion

A subjective assessment was performed to test the high-resolution effect of NLSP. The assess-

ment was conducted by comparing NLSP and non-NLSP processed 4K videos on 4K TV sets.

The results statistically proved that NLSP can effectively enhance images. A conventional SR

function is performed for only enlarged images, whereas the proposed method is useful for en-

hancing images without enlargement. In this study, we have only assessed the resolution. In the

future, we intend to assess other factors, such as noise and color.
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Chapter 6

Subjective Assessment of Smartphone

Displays with Super Resolution using

Best-worst Method

6.1 Introduction

The introduction of the iPhone in 2008 increased the popularity of smartphones and revolu-

tionized the way people communicate. Smartphones contain high-speed processors and large

storage spaces, allowing for a high-performance of smartphones compared with that of the con-

ventional mobile phones. Current smartphones are multifunctional devices that can be used as

replacements for other digital devices, such as cameras, audio displays, games, and television

sets (TV). The smartphone market has expanded beyond mobile phones, and numerous content

services for smartphones are provided. Videos are a highly popular form of smartphone content,

and there is a significant demand for the use of smartphones as video devices.

A TV set is a conventional video device for watching video content including TV programs.

Image/ video quality is an important feature in video devices, and TV manufacturers have been

attempting to improve image quality in TV sets to compete in the marketplace. Resolution is

generally considered as an indicator of quality; hence, developing technologies for improving

resolution is important. The resolution of common TV displays is the same as that of digital

high-definition television (HDTV) broadcasting (1,920 × 1,080 pixels). In 2013, 4K TV sets

with resolutions four times that of HDTV (3,840 × 2,160 pixels) were introduced, and in 2014,
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4K broadcasting began tentatively in Japan.

When early smartphones were introduced, their major content was still images, owing to

the limitations of mobile networks. In the past several years, the band limitations of mobile

networks have expanded and watching video content on smartphones has become popular. TV

sets have been replaced by smartphones, and using smartphones with high-resolution displays

has also become a trend similar to that in the TV market. The display resolution of older

smartphones was the same as that of half-size video graphics array (HVGA) (480 × 340 pixels).
They have been improving steadily and HDTV resolution is now commonly used. In 2015, one

smartphone manufacturer announced a smartphone with a 4K display.

Despite the high-resolution displays, such as 4K, being adapted to smartphones, the content

provided is almost entirely HDTV. Furthermore, playing HDTV content on a 4K resolution

display does not improve resolution, theoretically, as the content is merely enlarged to fit to the

display, resulting in an interpolated image. Therefore, alternative ways of improving content

resolution are required.

Signal processing is another way of improving resolution. This technology has advanced

significantly over the last 20 years and resolution improvement technologies namely super res-

olution (SR), are used in some practical applications. Many SR methods have been proposed

untill now [2][8][11], and some TV sets have also been equipped with these technologies.

In our previous works, an SR using nonlinear signal processing (NLSP) was proposed, and

its image quality for 4K TV sets was also been proven [8][59][68]. We applied NLSP to a

smartphone. However, the capability of SR on smartphone displays, which are smaller than TV

sets, has not been proven. Display sizes of the smartphones sold in 2014 are about 4.5-5.5 inches

and it means a tenth of conventional TV sets. There is no evidence that SR can improve the

image quality on smartphone displays. Thus, the evaluation of NLSP on smartphone displays is

necessary and we compare the image qualities of the smartphones with and without NLSP, and

existing manufacturers’ smartphones.

While the evaluation of the capability of SR is required, there is no standard method for

the evaluation. The signal analysis in the frequency domain is a way to analyze the image

resolution. However, the SR processed signal is only sent to the display of the devices, and

there is no way to take the video signals from the smartphone devices. Since the signal analysis

cannot be used, a subjective assessment is the only way to evaluate the performance of SR

embedded in the video devices.
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Subjective assessments are human psychophysical experiments. Numerous subjective as-

sessment methods were reported in the areas of psychology and psychophysics, and they were

applied to various purposes [11][12][13][62][69][70]. As described in Chapter 3, Chapter 4,

and Chapter 5, we applied Scheffe’s paired comparison [62] to assess an image quality of SR,

and proved the usefulness of the assessment [59][68]. However, the assessment using paired

comparison has an issue that becomes extremely time-consuming and fatiguing to the assessors

in proportion to the number of the stimuli. In other method, a ranking method is the quicker

assessment method [69] and this method was applied to an image quality assessment of CR

images [71]. Nevertheless, the ranking method is inclined to cause dispersion of the assessors’

opinions.

To overcome these problems, we anew introduce another assessment method, best-worst

method [70]. This method can contribute a simple, quick procedure and high accuracy data

collection. In this chapter, the assessment method is described and we also verify the usefulness

of this method, including the image qualities of the smartphone displays.

6.2 Super Resolution with Nonlinear Signal Processing

Various SR algorithms have been proposed and some of them are equipped on TV sets.Most are

very complex and require special hardware devices to work in real time. Application of them to

smartphones is impossible because SR has to work over software.

Most SR methods are based on linear processing theories and pattern matching methods.

Our SR method uses non-linear signal processing [8][9]. Figure 6.1 shows the signal flow of

NLSP. The process is separated from the input image. First process including the high pass

filter, the cubic function, and the limiter, creates the high frequency components. The high pass

filter detects edges in the input image. The cubic function is one of the non-linear functions,

and outputs y = x3. This function generates the third harmonic waves of the edges detected

by the high pass filter. The waves are generated only from the detected edges, and have high

frequency components the input image does not have. The output of the cubic function becomes

very large. If the input image has 8 bit depth, the range of the output of the high pass filter is

from -255 to 255, and thus that of the cubic function is from (−255)3 to (255)3. The limiter fits
the waves to the image. In the second process, the output of the limiter and the input image

are added by the adder. The output image has high frequency components not existing in the
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Figure 6.1: NLSP

Table 6.1: Stimuli

Smartphones Manufacturers NLSP
A a ON
B a OFF
C b -
D c -
E d -

original input image. The basic algorithm of NLSP is the same as Enhancer except the cubic

function. This algorithm can improve the resolution Enhancer cannot, and can work in real

time.

6.3 Subjective Assessment Method

The five smartphones (A, B, C, D, and E) shown in Figure 6.2 were used as stimuli for the

assessment. The four smartphone models sold by different manufacturers (a, b, c, and d) were

selected, and NLSP was applied to the manufacturer a’s model. The manufacturers and the

state of NLSP are described in Table 6.1. The smartphones A and B are the same models of the

manufacturer a. The NLSP processed video can be output onto the display by the setting of SR

processing for NLSP to be enabled (ON). If the setting of it is disabled (OFF), the unprocessed

video signal is output. The smartphones C, D, and E are respectively different manufacturers’

models. Display resolution of the five smartphones is full-HD (1,920 × 1,080). The assessment
was conducted by comparing the image qualities when full-HD videos are displayed. The

smartphones were respectively ranked according to the image quality in resolution by using

best-worst method.
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Figure 6.2: Smartphones

6.3.1 Best-worst Method

The procedure of best-worst method is a repetition of a choice of a pair of the best and worst

objects from a set. The assessment process of best-worst is as below: An observer selects the

best and worst (highest and lowest resolution) smartphones from the five smartphones. The best

smartphone is of the 1st rank, and the worst smartphone is of the 5th rank. The observer selects

the best and worst smartphones in the same way from the remaining three smartphones. The

best smartphone is of the 2nd rank, and the worst smartphone is of the 4th rank. Then the last

remaining smartphone is of the 3rd rank.

6.4 Experiment

6.4.1 Apparatus

The smartphones for the assessment were flagship models that each manufacturer sold in 2014.

They have 5.1- 5.5 inch displays that the resolution is full-HD (1,920 × 1,080). The same

video sequence was repeated between the smartphones, and the observers compare the image

qualities.

6.4.2 Test Sequences

We selected five test sequences for the assessment[36]. The length of each test sequence is 10-15

second. The test sequences were taken by a consumer digital video camera withMPEG-4 format

and HDTV (1080p) resolution, and they have very high frequency elements without camera

57



(1) Basilica (2) Market

(3) Square (4) Castle 1

(5) Castle 2

Figure 6.3: Test sequences

works, such as tilting and panning. The test sequences are shown in Figure 6.3 (1)-(5). The

ovals on Figure 6.3 (1)-(5) indicate high-resolution areas that are easy to assess the resolution.

Test sequence “Basilica” (Figure 6.3 (1)) has details in a roof, a surface of a pillar, and characters

of a wall. Test sequence “Market” (Figure 6.3 (2)) has details in a stone pavement, window

frames, and a surface of a house wall. Test sequence “Square” (Figure 6.3 (3)) has details in a

surface of a building, a fence, and a mark of the building. Test sequence “Castel 1” (Figure 6.3

(4)) has details in a surface of a brick building, and a stone pavement. Test sequence “Castel 2”

(Figure 6.3 (5)) has details in two statues and a bilateral surface of a building. These areas were

presented to the observers.
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Figure 6.4: Best-worst method

6.4.3 Observers

23 observers participated in the experiment. They are non-video experts who do not work in the

video industry and they have normal visual acuity and color vision [36].

6.4.4 Experimental Conditions

The experiment was conducted in a room with general lighting conditions. Prior to each as-

sessment, a training session was held for the observers to understand the meaning of resolution.

The experimental procedure and the evaluation points were properly provided to the observers

using a dummy video sequence. Observers take smartphones in their hands and compare the

image resolution. The assessment areas in the test sequences were not specified. The two-four

highresolution areas of the ovals on Figure 6.3 (1)-(5) were presented to the observers as the

examples of the assessment areas. The viewing distance during the assessment was not spec-

ified to reproduce the viewing environment because it depends on each user. The observers

were asked to assess only resolution, including saturated-highlights. Saturated-highlights mean

the loss of details that occurs in the white areas in the image with excessive luminance level.

Other image quality factors, such as noise, luminance, and color, were not considered in the

assessment. Figure 6.4 shows a photograph of the experiment.

6.5 Results

The statistical analysis process in this study is as follows. Using best-worst method, the ranks

(1st-5th) were given to each stimulus (smartphones A, B, C, D, and E) as the evaluation value.
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Table 6.2: Analysis result (Basilica)

fkl
l \ k A B C D E rl Pl εl Kεl
1 19 1 3 0 0 5 90 0.1 1.28155
2 1 6 15 1 0 4 70 0.3 0.52440
3 3 12 3 4 1 3 50 0.5 0.00000
4 0 4 1 18 0 2 30 0.3 -0.52440
5 0 0 1 0 22 1 10 0.1 -1.28155

Σ( fkl × Kεl) 24.874 2.330 9.905 -8.915 -28.194
Rk 1.081 0.101 0.431 -0.388 -1.226
S 2k 0.199 0.181 0.291 0.077 0.068

(E.g. the smartphone A ranks 1st, the smartphone B ranks 3rd, the smartphone C ranks 2nd, the

smartphone D ranks 4th, and the smartphone E ranks 5th.) The rank data were normalized by

the distance scale since the average values of the rank do not have mathematical meanings. The

normalized scores corresponding to each rank were given to the stimuli and the average scores

for each stimulus were calculated [67]. The statistical differences between the average scores

were evaluated by t-test.

The assessment result for “Basilica” sequence is shown as Table 6.2. The row l indicates

the ranks (1- 5), and the column k indicates the stimuli (A-E). The values of fkl are the numbers

of the observers for the stimulus k as the rank l. (E.g. fC2 (15) means that 15 observers ranked

the smartphone C as the 2nd.)

The normalized distances for each stimulus were calculated as follow. The column rl in

Table 6.2 represents the score corresponding to the rank l. The number of the stimuli (5) is

represented as n. The column Pl indicates the mean value of the lth range, which is divided

from the 0-100 range into n. The column Kεl is the normalized quantile of Pl on the Gaussian

distribution and it was used as the normalized score for the rank l. The normalized scores were

given to each stimulus. The row Σ( fkl × Kεl) is the total of the normalized scores for the stimuli
k. The row Rk means the average scores and the row S 2k means the variances for the stimuli k.

Each average score represents the scale value of the image quality in resolution.

Figure 6.5 shows the average scores for “Basilica” sequence. The horizontal axis indicates

the average score. The marks on the axis (rhombus, square, triangle, x-mark, and asterisk)

show the average scores of the stimuli respectively (smartphone A, smartphone B, smartphone

C, smartphone D, and smartphone E). The higher the averages indicate the higher the evaluation

of resolution. The significance test is necessary because the differences in the average scores are
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Figure 6.5: Assessment result (Basilica)
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Figure 6.6: Assessment result (Market)
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Figure 6.7: Assessment result (Square)
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Figure 6.8: Assessment result (Castle 1)
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Figure 6.9: Assessment result (Castle 2)

∗∗ 1% statistical difference
∗ 5% statistical difference

61



not guaranteed. Here, t-test was used to evaluate the statistical differences between the average

scores of the stimuli. A statistics quantity t0 for t-test is as follows:

t0(x, y) =
(Rx − Ry)

√
N − 1√

S 2x + S 2y
(6.1)

where x and y are stimuli, where N is the number of observers (23). The degree of freedom

of the distribution for the t0 is φ = 2N − 2 = 44. A critical t value for the 0.01 significance

level with the degree of freedom φ is t1% = 2.41413, and that for the 0.05 significance level

is t5% = 1.68023 [67]. If t0(x, y) is greater than the critical t values, the null hypothesis was

rejected and there is the statistical difference between the average scores of the stimuli x and y.

In the result of “Basilica” sequence as shown Figure 6.5, the highest smartphone is A, and

the second highest smartphone is C. The t0 value for the smartphone A and the smartphone C

(t0(A,C)) is as follows:

t0(A,C) = 4.35831 > t1% (6.2)

Since equation 6.2 satisfies t0 > t1%, the statistical difference with the 0.01 significance level

between the smartphones A and C is obtained. In addition, the 3rd highest smartphone is B, the

4th highest smartphone is D, and the lowest smartphone is E. The t0 values, for the 2nd high-

est smartphone and the 3rd highest smartphone (t0(C, B)), the 3rd highest smartphone and the

4th highest smartphone (t0(B,D)), and the 4th highest smartphone and the lowest smartphone

(t0(D, E)), are as follows:

t1% > t0(C, B) = 2.24788 > t5% (6.3)

t0(B,D) = 4.51795 > t1% (6.4)

t0(D, E) = 10.31652 > t1% (6.5)

Equation 6.3 does not satisfy t0 > t1%, but satisfies t0 > t5%. Thus, there is the statistical

difference between the smartphones C and B with the 0.05 significance level. Equations 6.4

and 6.5 satisfy t0 > t1%. Thus, the statistical differences between the smartphones B and D, and

the smartphones D and E, are obtained with the 0.01 significance level. There are the statistical

differences between all the stimuli. The asterisks (∗∗/ ∗) in Figure 6.5 represent the statistical
difference between the stimuli indicated by the arrow. The 0.01 significance is shown as “∗∗”,
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and the 0.05 significance is shown as “∗”. The results for the other test sequences are shown in
figures 6.6-6.9. All results have the similar tendencies. The averages are high in the order of A,

C, B, D, and E. The average score of the smartphone A equipped with NLSP is highest of the

five smartphones for all cases.

6.6 Discussions

The average score of the smartphone A with NLSP is higher than the smartphone B, without

NLSP, and the other manufacturers’ smartphones. It implies NLSP can improve the image qual-

ity in resolution, and the image quality of the smartphone with NLSP is superior to the other

manufacturers’ smartphones. The assessment results prove the usefulness of the image qual-

ity of NLSP on smartphone displays. There are statistical differences between all the smart-

phones’ image qualities. It is assumed that the differences in the image qualities were caused

by technologies, such as image processing and display, which each manufacturer developed

independently.

6.7 Conclusion

In this chapter, NLSP was applied to a smartphone, and the subjective assessment of smartphone

displays was conducted. Best-worst method was used for the assessment. The results were

statistically proven that the image quality of the smartphone with NLSP is superior in resolution

to the other smartphones without NLSP.

The assessment method described in this chapter is applicable to other assessments. It is

necessary to consider other factors for NLSP image quality, such as noise and color.
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Chapter 7

Conclusions

In this study, the relationship between aliasing and super resolution image reconstruction was

theoretically analyzed and the limitation of SRR was discussed. Aliasing in images is an im-

portant factor for SRR to reconstruct a high-resolution image. Aliasing decreases in accordance

with fill factor, which is a parameter for imaging device. Current digital image and video con-

tent has almost no aliasing, and thus the application fields of SRR are extremely narrow. The

results of subjective assessment experiments of a TV set with SRR were consistent with the

discussions above. The experimental results show that the difference between SRR and conven-

tional Lanczos method is obtained in some of the results only, and the performance is inferior

to the other SR method. The limitation of SRR on TV sets is proved theoretically and sub-

jectively. There has been no method for assessing displays equipped with signal processing

including SR method. In this study, the assessment method for multiple displays was proposed

and the reproducibility of the proposed method was proven through the experiments. The pro-

posed assessment method is useful for product comparisons and it contributes to the satisfaction

of consumers’ demand for better quality of display products. The proposed assessment method

is adaptable to assessments measuring other factors, such as noise, color, and texture; measure-

ment of the overall total performance should be the focus in the future work.
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