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Chapter 1

Introduction

Positron emission tomography (PET) is a physiological imaging technique in nuclear medicine.

PET is based on the fundamentals of nuclear dacay, specifically beta-plus (β+) decay. Beta-plus

decay is a nuclear disintegration process that occurs in a nucleus with more number of protons

than neutrons. In a β+ decay, a proton is transformed into a neutron, and then a positron and

a neutrino are simultaneously released [1]. PET is used to evaluate physiological processes of

biological systems, which is applicable in diagnosing, staging and treatment of various diseases,

such as various heart and brain diseases and cancers. In a PET study, a β+ radioactive sub-

stance, referred to as a radiotracer, is administered in vivo. When the administered radiotracer

undergoes β+ decay in vivo, emitted positrons annihilates with the electrons in tissues. The

positron-electron annihilation gives off two γ-rays, which are approximately in opposite direc-

tions. The γ-rays are then detected to construct the concentration of the radiotracer in tissues

over time; these data are referred to as tissue time-activity curves (tTACs). Various methods

such as the Logan graphical analysis (LGA) can then be applied to tTACs for quantitative

analysis of the radiotracer kinetics.

LGA can be thought of as a linearization technique for PET data. LGA transforms PET tTACs

into linear relationships [2, 3]. Physiologically interpretable quantities, such as distribution

volume (DV ), distribution volume ratio (DV R) and the non-displaceable binding potential

(BPND) can be obtained from the slope of the LGA linear relationship. LGA is computationally

efficient, in that it is easy to implement and fast to compute, owing to which it has been well-

accepted amongst researchers.

1
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Problem statement and motivation

Traditionally, the LGA slope is estimated by the common ordinary least-squares (OLS) regres-

sion. However, in the presence of noise in PET data, it has been shown that the OLS-based

estimates of the LGA slope are underestimated [4, 5, 6, 7]. In addition, this negative bias has

been observed to increase with the magnitude of both noise and the LGA slope [4, 5, 6, 7].

The underestimation is due to that both the LGA variables are contaminated with a correlated

noise, but OLS only accounts for the noise in the response variable. Specifically, the noise in the

LGA variables is attributed to the noisy term, C(t) (see Eqs. (2.21, 2.40)), in the denominators

of both of the two LGA variables. Accordingly, the noise due to C(t) propagates correlatively

in the LGA variables, presenting a correlated errors-in-variables (EIV) problem. This explicitly

makes OLS unsuitable for estimating the LGA slope.

Various methods have been proposed to reduce the influence of the noise in PET data on the

estimated slope. These methods range from tTAC smoothing methods, such as the generalized

linear least-squares (GLLS) [8] technique, to methods based on a rearrangement of the original

LGA equation, such as the multilinear reference tissue models (MRTM 1 & 2) [9, 10]. Other

methods including orthogonal distance regression (ODR) [11] simply employ a different line

estimation technique. These methods, however, have been found to either only slightly reduce

the bias or reduce the bias whilst causing variations in the estimates [5, 6]. This necessitates

the need for further studies. This study aims to establish a method to reduce the bias in the

estimates of the LGA slope, and improve the contrast of the resulting parametric images. In

[11], it has been demonstrated that the regression method used to estimate the Logan slope

influences the resulting bias. On this basis, this study employs an alternative linear regression

method referred to as least-squares cubic (LSC) to estimate the LGA slope. LSC accounts for

noise in both variables, by minimizing the squared residuals in both the predictor and response

variables [12, 13, 14]. In addition, LSC also incorporates the correlation of the noise in the vari-

ables. To further improve the LSC estimates, LSC is for the first time combined with tTACs

denoising techniques, principal component analysis (PCA) and correlated component analysis

(CorrCA).

PCA is a dimensionality reduction technique used mostly for feature extraction and noise filter-

ing. PCA transforms variables into new sets of variables that are linear functions of the original

工学院大学 2 KOGAKUIN UNIVERSITY
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variables [15]. The new sets of variables are uncorrelated and are defined by sets of orthogonal

basis vectors and principal components (PCs) that optimally describe the variance in the data.

The PCs and the corresponding variance are obtained by solving for the eigenvectors and eigen-

values of the covariance matrix of the data. The eigenvectors are the orthogonal basis vectors,

which define the PCs, and the eigenvalues are the corresponding variances.

PCA is a common tool in PET parametric imaging; it has been previously used to denoise

tTACs in [16], and it showed minimal effects on the variance. Therefore, this effect is employed

in this study. PCA has also been used for clustering in [17]. Further, PCA has also been used

for noise filtering in PET studies with irreversible radiotracers [18]. Here, LSC and PCA are

used together for the first time, and the effect of this fusion on the image quality was assessed

not only in the usual manner of visual inspection of the images but also numerically in terms

of the contrast between grey matter and white matter. In other words, this study utilizes the

combined effects of LSC’s minimal bias and PCA’s precision.

Like PCA, CorrCA is also a feature extraction method. CorrCA operates by identifying compo-

nents that are maximally correlated between repetitions in multivariate data [19]. Specifically,

CorrCA maximizes the ratio of between-repetition to within-repetition covariance [19]. In the

context of our application to PET data, our repetitions are along the slices dimension. CorrCA

will therefore maximize the ratio of between-slices to within-slices covariance. This ratio is re-

ferred to as inter-subject correlation (ISC). Specifically in our context, it translates to inter-slice

correlation.

Maximizing the between-slices to within-slices covariances maximizes the mean-over-variance

across slices, which has been asserted to define a signal-to-noise ratio measure [19]. CorrCA

capitalize on the ability to simultaneously operate ”within individual slices” and ”across all

slices”, without arranging the slices in one plane. That means operating directly on the 3D-

array, unlike PCA which requires the slices to be arranged side-by-side into a 2D-array. This

could be advantageous over PCA, which means CorrCA can possibly provide a better noise

filter method in comparison to PCA. This study therefore also seek to introduce CorrCA to

PET parametric imaging and assess the performance of CorrCA in comparison to PCA. Here-

after, the fusions of LSC with PCA and CorrCA are respectively denoted as LSC–PCA and

工学院大学 3 KOGAKUIN UNIVERSITY
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LSC–CorrCA. Similarly, using OLS with PCA and CorrCA are herein referred to as OLS–PCA

and OLS–CorrCA, respectively.

This study was conducted on both simulation and real data. Two sets of simulation data were

used, one mimicking 11C-carfentanil (CFN), and the other mimicking 11C Pittsburgh compound

B (11C-PiB). The real data are for 11C-PiB PET brain images. Both CFN and 11C-PiB have

specific binding sites in the brain. CFN binds to µ-opioid receptors, and 11C-PiB binds to beta

amyloid (Aβ) plaques.

Thesis outline

The next chapter (Chapter 2) goes into more detail about PET. In the subsections, the compart-

mental model, derivation of the LGA from the compartment model, as well as the interpretation

of the parameters estimated from the LGA are discussed. OLS, ODR and MRTM2 are also

discussed. Chapter 3 gives the derivation and analysis of LSC. The analysis of LSC is also

given specifically in terms of the LGA variables. The results of the study of LSC-based LGA in

comparison to OLS-based LGA and MRTM2 are presented in this chapter (Chapter 3). These

are the results reported in the published paper: [20]. In Chapter 4, the mathematical details

of both PCA and CorrCA are presented. The results of the study of LSC–CorrCA, LSC–PCA,

LSC and OLS are given in this chapter (Chapter 4). Chapter 5 summarizes this thesis and

discusses future directions.

工学院大学 4 KOGAKUIN UNIVERSITY



Chapter 2

Positron emission tomography,

compartmental model and the Logan

graphical analysis

2.1 Positron emission tomography

PET is referred to as a functional imaging method. This is to differentiate it from other imaging

techniques such as magnetic resonance imaging (MRI) which are defined as structural imaging.

A functional imaging helps image the functioning status of cells in vivo, whereas structural

imaging is used to examine the structural shapes of tissues and organs. PET is used to visualize

physiological functioning of tissue cells by monitoring the interaction of the radiotracer with

the system’s biochemical processes and activities such as glucose metabolism, oxygen consump-

tion and blood flow. PET is advantageous over other imaging techniques in that it can detect

diseases from their early onsets. In a similar way PET can also detect immediate response of a

patient to treatments.

A radiotracer is made to have an affinity to a particular region of interest (ROI). Therefore,

eventually after administration, the radiotracer will accumulate in the ROI. As the radionuclide

undergoes β+ decay in the ROI, the time-course of radioactivity in tissues is recorded to be used

to study the physiological activities of interest in the ROI. Figure 2.1 shows a simple scheme

of PET imaging. Radiotracers are made of two components; a radionuclide and a biological

molecule. This forms a biological radioactive compound. The biological molecule describes the

5
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affinity aspects of the radiotracer.

Equation (2.1) [1] represents a β+ decay process. The parent nucleus A
ZXN has more number

of protons than neutrons, i.e., Z > (A− Z = N). A proton in the proton-rich parent nucleus

is transformed into a neutron, accompanied by a simultaneous emission of a positron (e+) and

a neutrino (v). The resulting daughter nucleus, A
Z−1YN+1, has ”one-less number of protons”

and ”one-more number of neutrons” than the parent nucleus. The mass number (A) of the

daughter nuclide remains the same as that of the parent nuclide, i.e., the daughter nuclide is an

isobar of the parent nuclide —different chemical elements with same number of nucleons (A)

and different number of protons. The daughter nuclide can be a stable isotope or a radioactive

isotope which is closer (than the parent nuclide) to the stability region on the chart of nuclides.

A
ZXN → A

Z−1YN+1 + e+ + v. (2.1)

The β+ decay equation for 11C is represented in Eq. (2.2). 11C is the radionuclide label for

11C-PiB radiotracer, which is utilized for clinical 11C-PiB PET images analyzed in this study.

11
6 C5 → 11

5 B6 + e+ + v + 0.96 MeV. (2.2)

Equation (2.2) means that the unstable 11C radionuclide undergoes β+ decay to form the stable

isotope 11B, and a total of 0.96 MeV is released —which is mostly carried away as kinetic energy

of the released particles. 11C has a half-life of 20.364 minutes.

Beta-plus decay is in contrast to another form of beta decay, referred to as beta-minus (β−)

decay, in which a neutron is transformed into a proton, accompanied by a simultaneous emission

of an electron (e−) and an anti-neutrino (v̄). Beta-minus decay can be represented by Eq. (2.3)

[1] below:

A
ZXN → A

Z+1YN−1 + e− + v̄. (2.3)

With reference to the type of beta particles released in β+ and β− decay, they can be referred to

as positron emission and electron emission, respectively. The two beta decay processes can

be further explained interms of “up quarks” and “down quarks” —which are the fundamental

particles that forms the nucleons.

PET radiotracers are commonly made of low elements short–lived isotopes such as 11C, 18F,

15O and 13N. Due to its effectiveness in cancer detection and staging, [18F]-fluorodeoxyglucose

工学院大学 6 KOGAKUIN UNIVERSITY
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(FDG) is the widely used radiotracer [1, 21]. Depending on factors such as the ROI, the ra-

diotracer being used and the demographics of the subject, a radiotracer can be administered

by either injection, swallowing or inhalation. The main purpose of a radiotracer is to trace the

physiological process of interest in the ROI. Therefore, it is administered in such an amount

that it does not perturb the physiological processes it is being used trace [22, 21].

Being a glucose analog, [18F]-FDG, is transported into cells by the same mechanism as glucose.

Intracellular, glucose is phosphorydated into glycolysis. Unlike glucose, [18F]-FDG cannot en-

ter glycolysis. This is because [18F]-FDG does not have the 2-hydroxyl group (-OH) required

for glycolysis [23, 24]. [18F]-FDG therefore gets trapped in cells in the form of [18F]-FDG-6-

Phosphate [23]. [18F]-FDG-6-Phosphate exits the cells via β+ radioactive decay. Imaging of the

distribution of the [18F]-FDG by PET can therefore be used to trace the distribution of glucose

uptake and phosphorylation.

The clinical data used in this study are of 11C-PiB radiotracer. 11C-PiB binds to Aβ plaques in

the brain [25, 26], which are associated with Alzheimer’s disease (AD) and and mild cognitive

impairment (MCI). Quantification of 11C-PiB binding therefore allows for visualization and

quantification of in vivo Aβ deposition.

2.1.1 Positron emission tomography detection system

PET data acquisition is based on measuring the total energy lost by annihilation photons as

they interact with the detector equipment. Annihilation photon detectors form a ring surround-

ing the subject to undergo PET imaging. The detection ring depicted in Fig. 2.1 is made of

scintillation materials mounted onto photomultipliers tubes (PMTs) [27]. Photon detection is

then based on their interaction with the scintillator material. The scintillator material is a

specially-designed crystal which emits visible light upon interaction with annihilation photons

[1]. This process is referred to as scintillation. In short, in the best case scenario, when there is

no photoelectric or scatter events, annihilation photons reach and directly excite the scintillator

valence electrons. The excited electrons get into the conduction band, and return (de-excite)

to the ground state by releasing some energy via photon emission [1]. Scintillation materials

are modified by adding impurities to pure crystals such that the scintillation photons are in the

visible electromagnetic spectrum, i.e., luminescence [1]. The PMTs then detect the scintillation

工学院大学 7 KOGAKUIN UNIVERSITY



PK SHIGWEDHA PET, COMPARTMENTAL MODEL AND LGA

'

&

$

%
Figure 2.1: A simple PET schematic diagram.

photons by ionization mechanism of photoelectric effect. Two photons detected within a preset

coincidence time window (usually a few nanoseconds (1 – 12) ) are recorded and used to deter-

mine a line of response (the line connecting the centers of the two detectors.) [1, 27, 28]. The

number of scintillation photons produced in the scintillator medium, and the subsequent electric

charge produced in the PMT is proportional to the energy deposited by the annihilation photon

in the scintillator medium. These data can then be used to evaluate radioactivity concentration

in tissues.

The four main properties of scintillator materials are, stopping power for annihilation photon

(511 keV), signal decay time, light output, and the intrinsic energy resolution [1]. The stopping

power is defined by the inverse of the mean distance a photon can travel before depositing its

energy in the detector material [1, 28]. This distance is termed attenuation length [1], and it is

dependent on the density and effective atomic number of the scintillator material. The high the

number of photons depositing their energy in the scintillator material the better, i.e., a scin-

tillator material with a short attenuation length is preferable. The decay time of a scintillator

工学院大学 8 KOGAKUIN UNIVERSITY
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describes the rate at which the valence electrons excite and de-excite following annihilation pho-

ton absorption, i.e., the rate of photoluminescence. During this period the detector is referred

to as being dead since it cannot process all other coincidence events [28], and are therefore lost

—this time period is referred to as dead time. Decay time is usually in the range of hundreds

of nanoseconds (e.g., 230 nanoseconds for Sodium Iodide doped with Thallium (NaI(Tl)) scin-

tillator crystal [28]). The manner in which the decay time is associated with the efficiency of

the scintillator material is that, short decay time will allow discrete cascades of electrons to

be processed at high count rates, and minimize the number of random coincidences [1]. Light

output refers to the number of scintillation photons produced by an incident annihilation pho-

ton. High light output allows for a good spatial resolution and good energy resolution [1, 28].

High energy resolution allows for improved discrimination of scatter and true events [1, 28].

The energy resolution of a scintillator is also dependent on the intrinsic energy resolution of the

scintillator material, which is dependent on the inhomogeneities of the crystal and its associated

properties, such as light-output uniformity [1].

There are many types of scintillator materials used in PET detection systems. One such is the

NaI(Tl) crystal mentioned earlier. The NaI(Tl) scintillator has a high light output, providing

a good energy and spatial resolution [1, 28]. However, NaI(Tl) scintillator crystal has a slow

decay time, which means increased detector dead time, as well as increased random coincidences

[1]. Because of its low density, NaI(Tl) also has a low stopping power than the other scintillator

materials [1, 28]. One other scintillator material is the Gadolinium Oxyorthosilicate doped with

Cerium (GSO). GSO has a lower stopping power and energy output, but it is mostly emplyed

for its improved energy resolution and uniform light output in comparison to other scintillator

materials [1]. Another scintillator material is Barium Flouride (BaF2). BaF2 is noted for its

very short decay time (600 picoseconds), an excellent feature that makes up for the effects of

its low stopping power [1].

PMTs are comprised of an enclosed vacuum incorporated with a photo-cathode at the entrance

window [1]. The vacuum tube of the PMT consists of dynodes, arranged at consecutively

increasing potentials. An incident scintillation photon interacts with the atoms of the photo-

cathode layer by photoelectric effect [1]. The resulting photo-electron is accelerated to the first

dynode by an applied electric field [1]. This accelerated photo-electron will cause further mul-

工学院大学 9 KOGAKUIN UNIVERSITY
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tiple electron emissions at the dynode. This trail of electron acceleration and further multiple

secondary emissions continues at consecutive dynodes, leading to an amplified electric signal.

The final component of the dynode series is an anode through which the collected electric charge

leaves the vacuum tube for signal processing.

In PET data acquisition, three main kinds of possible coincidence events, —namely, true, ran-

dom, and scatter coincidences— can be recorded. True coincidences are the events of interest

in a PET study. These events occur when two photons coming from one annihilation event are

detected by two oppositely located detectors, without encountering any major interactions with

the tissues in the field of view. Random coincidences are accidental detection of two unrelated

photons as coincidence photons, detected within the preset coincidence detection window. Two

photons from a single annihilation event that are detected after either one or both have under-

gone a major scatter event results in what is termed scatter coincidences. Random and scatter

events are some of the major contribution to sources of errors in PET data, in addition to

factors such as positron range. Positron range refers to the distance traveled by a positron after

emission from the nucleus before annihilation [1]. The aim of PET measurement is to determine

the position of the nucleus in which beta-plus decay took place, therefore if the annihilation

event took place at some distance from the nucleus then that will add to errors in PET data.

2.1.2 Compartmental model and the Logan graphical analysis

To better understand the LGA, one needs to understand it in terms of its mathematical construc-

tion. LGA is derived from a well known concept in kinetic modeling referred to as compartmen-

tal model. Compartmental model forms the foundation of PET kinetic analysis. Speciffically,

compartmental model is used to describe the kinetics of a radiotracer in vivo via a set of differ-

ential equations. In compartmental model, it is assumed that there are discrete physiological

regions in which the radiotracer is concentrated [21, 29]. These physiological regions are referred

to as compartments. Applying differential Calculus, one obtains a set of differential equations

describing the rates of change in the concentration of the radiotracer in the compartments with

time. The LGA is derived from the differential equations of the compartmental model, giving

a linear relationship of which the slope is a physiologically interpretable quantity.

Figure 2.2 shows schematic figures for compartmental models; Two compartments (one tissue)

工学院大学 10 KOGAKUIN UNIVERSITY
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model in 2.2(a); Three compartments (two tissues) model in 2.2(b); and Four compartments

(three tissues) model in 2.2(c). The compartments CP , CF , CN , and CS represent the con-

centration of the radiotracer in arterial plasma, bound-free radiotracer, non-specifically bound

radiotracer, and specifically bound radiotracer, respectively. The naming of the compartments

are self-explaining. The arterial plasma compartment refers to the radiotracer in the arterial

plasma, which has not yet entered the tissues. Specifically bound compartment refers to the

radiotracer specifically bound to target receptors in tissues. Non-specifically bound refers to

the radiotracer that is bound to receptors other than the target receptors.

The transportation of the radiotracer between neighboring compartments is described by the

exchange rate constants, K1 [ml g−1min−1] and k2–4 [min−1] [30, 21]. K1 denotes the delivery

rate of the radiotracer from the arterial plasma to tissues; k2 is the clearance rate from the

tissues back to the plasma; k3 and k4 are the respective association and dissociation rates of the

radiotracer to and from the specific binding sites; and k5 and k6 are the respective association

and dissociation rates to and from the non-specific binding sites. The pairs of the exchange rate

constants and the difference of the radiotracer concentration of the two involved compartments

are assumed to be linearly related [21]. This relationship makes it possible to form the differ-

ential equations.

The concentrations of the radiotracer in the tissue compartments at time t [min] for the one-

tissue compartment model in Fig. 2.2(a) are described by the differential equation below,

dCt(t)

dt
= K1CP (t)− k2Ct(t). (2.4)

Similarly, the concentrations of the radiotracer in the tissue compartments for a two- (Fig.

2.2(b)) and three- (Fig. 2.2(c)) tissues models are respectively described by,

dCF (t)

dt
= K1CP (t) + k4CS(t)− (k2 + k3)CF (t)

dCS(t)

dt
= k3CF (t)− k4CS(t),

(2.5)

and,
dCF (t)

dt
= K1CP (t) + k6CN (t) + k4CS(t)− (k2 + k3 + k5)CF (t)

dCN (t)

dt
= k5CF (t)− k6CN (t)

dCS(t)

dt
= k3CF (t)− k4CS(t).

(2.6)
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(a) Two compartments (one-tissue) model.

(b) Three compartments (two-tissues) model.

(c) Four compartments (three-tissues) model.

Figure 2.2: Schematic figures of the (a) one-, (b) two- and (c) three-tissues compartmental

models.
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CP (t), CF (t), CS(t) and CN (t) denote the concentrations of radioactivity in the respective com-

partments at time t.

PET data are not recorded separately for the compartments. The recorded PET data represents

a sum of the radioactivity in all tissue compartments. Denoting the observed PET data by

CPET (t), for Fig. 2.2(c) we can write,

CPET (t) = CF (t) + CS(t) + CN (t). (2.7)

Non-linear least-squares method can be used to fit measured tTACs to the compartmental

model to estimate the kinetic parameters (exchange rate constants) [21], using arterial plasma

time-activity curve, CP (t), as input function. Estimated kinetic parameters are then used to

evaluate physiological processes of the target tissues [21]. The non-linear approach is dependent

on the number of components. Graphical analysis methods such as the LGA provides a great

advantage because they are independent of the assumed model (i.e. number of compartments)

[6, 21, 2]. This makes it possible to be able to obtain parameters such as DV, DVR and BPND

irrespective of the assumed compartmental model.

The procedure below demonstrate the linearization of the compartmental model equations to

obtain the LGA. The LGA forms a simple linear relationship of two variables, and it is the slope

of this relationship, which is a function of the kinetic parameters, that defines the physiological

functioning of the target tissues.

The differential equations in (2.4), (2.5) and (2.6) can be represented in a general form as,

dA(t)

dt
= KA(t) + CP (t)Q . (2.8)

A represents a column vector of the radioactivity concentrations in tissue compartments, K

represents a matrix made of the kinetic parameters, k2−6, and Q denotes K1. Writing these
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expressions, A, K and, Q , out; for the one-tissue model we get,

A = Ct(t)

K = −k2

Q = K1.

(2.9)

The two-tissues model takes the form,

A =
[
CF (t) CS(t)

]T

K =

 −(k2 + k3) k4

k3 −k4



Q =
[
K1 0

]T
,

(2.10)

and similarly, the three-tissues model has the form,

A =
[
CF (t) CS(t) CN (t)

]T

K =


−(k2 + k3 + k5) k4 k6

k3 −k4 0

k5 0 −k6


Q =

[
K1 0 0

]T
.

(2.11)

The .T represents matrix transpose.

The total radioactivity concentration in tissues, Ct(t), is given by,

Ct(t) = CPET (t) =


Ct(t), for a one-tissue model

CF (t) + CS(t), for a two-tissues model

CF (t) + CS(t) + CN (t) for a three-tissues model

, (2.12)

such that the total radioactivity concentration in the whole ROI is,

CT (t) = Ct(t) + VPCP (t), (2.13)

where VP denotes the effective plasma in tissues.
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Let us define a unit vector U as,

U =



1 for a one-tissue model 1

1

 for a two-tissues model


1

1

1

 for a three-tissues model

,

so that we can write Ct(t) as

Ct(t) = U TA(t). (2.14)

Equation (2.8) can be rearranged into,

dA(t) = KA(t) dt+ CP (t)Q dt. (2.15)

Re-arranging Eq. (2.15) and integrating gives,

A(t)dt = −K−1QCP (t)dt+ K−1dA(t)∫ t

0
A(u)du = −K−1Q

∫ t

0
CP (u)du+ K−1A.

(2.16)

Integration of Eq. (2.14) is, ∫ t

0
Ct(u) du = U T

∫ t

0
A(u) du. (2.17)

Now, substituting Eq. (2.16) into Eq. (2.17) gives,∫ t

0
Ct(u) du = −U TK−1Q

∫ t

0
CP (u)du+ U TK−1A. (2.18)

Integration of Eq. (2.13) is,∫ t

0
CT (u) du =

∫ t

0
Ct(u) du+ VP

∫ t

0
CP (u) du. (2.19)
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Substituting Eq. (2.18) into Eq. (2.19) gives,∫ t

0
CT (u) du = −U TK−1Q

∫ t

0
CP (u)du+ U TK−1A + VP

∫ t

0
CP (u) du

= (−U TK−1Q + VP )

∫ t

0
CP (u)du+ U TK−1A.

(2.20)

Dividing Eq. (2.20) by CT (t) results in,∫ t
0 CT (u) du

CT (t)
= (−U TK−1Q + VP )

∫ t
0 CP (u)du

CT (t)
+

U TK−1A

CT (t)

= α

∫ t
0 CP (u)du

CT (t)
+ β.

(2.21)

Equation (2.21) is the LGA. The LGA is such that after some time t∗, the term,

U TK−1A

CT (t)
=

U TK−1A

Ct(t) + VPCP (t)
, (2.22)

becomes constant in time [2, 31]. In turn, Eq. (2.21) becomes a linear relationship between the

terms, ∫ t
0 CP (u)du

CT (t)
, (2.23)

and, ∫ t
0 CT (u) du

CT (t)
. (2.24)

The slope of the LGA linear relationship is α = −U TK−1Q + VP , and the y-intercept is

β =
U TK−1A

CT (t)
. A linear regression method can then be applied to estimate these regres-

sion parameters, slope and y-intercept.

Equation (2.21) can therefore be expressed simply as,

Y = αX + β, (2.25)

which is a simple linear relationship between X and Y , with a slope of α, and y-intercept β,

where,

X =

∫ t
0 CP (u)du

CT (t)

Y =

∫ t
0 CT (u) du

CT (t)
,

(2.26)
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and,

α = −U TK−1Q + VP

β =
U TK−1A

CT (t)
.

(2.27)

The slope of the LGA described in Eqs. (2.21–2.27) is termed DV . DV defines the capac-

ity of tissue receptors to bind the radiotracer [5]. DV is also interpreted as the equilibrium

ratio of the radioactivity concentration in ROI, CT (t) [kBq · cm−3], to that in plasma, CP (t)

[kBq ·mL−1]. Equilibrium state is achieved when there is no more irreversible uptake of the

radiotracer between the compartments. At this point, all radiotracer flow is due to reversible

uptakes, and all tissue compartments and the arterial plasma compartment are at equilibrium

with each other. In equilibrium state, the radiotracer concentration in the compartments be-

comes constant, meaning that the flow of the radiotracer into and out of a given compartment

is the same. In other words, equilibrium state is achieved after time t∗ when the y-intercept

term of the LGA has become constant.

The slope and y-intercept term are functions of the kinetic parameters, and it is demonstrated

for the different models as follows:

One-tissue model: α (α1) and β (β1) are,

α1 = −U TK−1Q + VP

= (−1)(−k2)−1K1 + VP

=
K1

k2
+ VP ,

(2.28)

and,

β1 =
U TK−1A

CT (t)
=

(1)(−k2)−1Ct(t)
CT (t)

=
Ct(t)

−k2CT (t)
+ VP

=
Ct(t)

−k2(Ct(t) + VPCP (t))

=
1

−k2
(

1 + VP
CP (t)
Ct(t)

) .

(2.29)
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In this case, equilibrium of the LGA is reached when the term CP (t)/Ct(t) in Eq. (2.29) is

constant against time. VP is assumed to be negligible such that the slope and y-intercept term

in the expressions in Eqs. (2.28) and (2.29), respectively, are functions of the kinetic parameters

only. Thus, Eq. (2.28) becomes,

α1 =
K1

k2
, (2.30)

which denotes the DV obtained from a one-tissue compartmental model. Accordingly, Eq.

(2.29) becomes,

β1 = − 1

k2
. (2.31)

Two-tissues model: α (α2) and β (β2) are,

α2 = −U TK−1Q + VP

= − 1

k2k4

[
1 1

] −k4 −k4

−k3 −(k2 + k3)

 K1

0

+ VP

=
K1

k2

(
1 +

k3
k4

)
+ VP ,

(2.32)

and,

β2 =
U TU−1A

CT (t)

=

− 1
k2k4

[
1 1

] −k4 −k4

−k3 −(k2 + k3)

 CF (t)

CS(t)


CT (t)

=
−1

k2k4

(
(k3 + k4)

Ct(t)

CT (t)
+ k2

CS(t)

CT (t)

)
.

(2.33)
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Three-tissues model: α (α3) and β (β3) are,

α3 = −U TK−1Q + VP

=
1

k2k4k6

[
1 1 1

]

−k4k6 k4k6 −k4k6

k3k6 k2k6 + k3k6 k3k6

−k4k5 k4k5 −k2k4 − k4k5



K1

0

0

+ VP

= −K1

k2
+

K1

k2k4

(
k3 −

k4k5
k6

)
+ VP ,

(2.34)

and,

β3 =
U TK−1A

CT (t)

=

− 1
k2k4k6

[
1 1 1

]

−k4k6 k4k6 −k4k6

k3k6 k2k6 + k3k6 k3k6

−k4k5 k4k5 −k2k4 − k4k5



CF (t)

CS(t)

CN (t)


CT (t)

=
−k3
k2k4

Ct(t)

CT (t)
+

1

k2

(
1 +

k5
k6

)(
CF (t)− CS(t) + CN (t)

CT (t)

)
− 1

k6

CN (t)

CT (t)
− 1

k4

CS(t)

CT (t)
.

(2.35)

2.2 Logan graphical analysis using a reference region

Distribution volume ratio and non-displaceable binding potential

Arterial blood sampling to obtain plasma time-activity curve (pTAC), Cp(t), is invasive and

uncomfortable for patients [21, 32]. It can also be expensive, which is also undesirable. An

alternative approach is to use a time-activity curve (TAC) of a reference region [3] instead of

pTAC to avoid blood sampling. A reference region has ignorable specific binding sites for the

radiotracer and a density of nonspecific binding sites equal to that in the ROI [3]. For the 11C-

PiB PET data used in this study, the cerebellum gray matter region was used as the reference

region [33]. This approach of using a reference region TAC in place of pTAC is referred to as
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Figure 2.3: One-tissue reference region compartmental model.

reference LGA, and the output parameter is the distribution volume ratio (DVR). DVR is a

measure of the ratio of DV in a receptor-rich region (ROI) to a non-receptor (reference) region,

and is used for assessing receptor availability [3].

Replacing

∫ t

0
CT (u) du and CT (t) in Eq. (2.21) by

∫ t

0
CREF (u) du and CREF (t), respectively,

and making

∫ t

0
CP (u) du the subject of the formula we get,

∫ t

0
CP (u) du =

1

DVREF

(∫ t

0
CREF (u) du− βREFCREF (t)

)
, (2.36)

where the superscript REF is for reference region.
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Substituting for

∫ t

0
CP (u) du in Eq. (2.21) as per Eq. (2.36), we get that,

∫ t
0 CT (u) du

CT (t)
=

DV

DVREF

(∫ t
0 CREF (u) du− βREFCREF (t)

CT (t)

)
+ β. (2.37)

For a two-compartment (one-tissue) reference region shown in Fig. 2.3, we write,

βREF = − 1

kREF2

, (2.38)

as per Eq. (2.31). Substituting for βREF in Eq. (2.37) gives,∫ t
0 CT (u) du

CT (t)
= DVR

(∫ t
0 CREF (u) du+ CREF (t)/kREF2

CT (t)

)
+ β, (2.39)

where DVR =
DV

DVREF
.

Replacing kREF2 in Eq. (2.39) with an average value, k̄REF2 , over all voxels in the reference

region, we get that,∫ t
0 CT (u) du

CT (t)
= DVR

(∫ t
0 CREF (u) du+ CREF (t)/k̄REF2

CT (t)

)
+ β, (2.40)

Equation (2.40) is the reference LGA, which uses a reference region TAC instead of pTAC.

Figure 2.4 shows an example of a simulated reference time-activity curve (CREF ) and a ROI

time-activity curve (CT ) in 2.4(a), and a corresponding Logan plot in 2.4(b). The tTACs in Fig.

2.4(a) are averages of 1024 simulated noisy tTACs, which the details will be given in Section

4.1.1. The data plot in the Logan plot in Fig. 2.4(b) achieves a linear relationship at a later

time after the radiotracer administration. These data points, indicated with filled circles, are

the ones used to estimate the Logan slope (DVR in Eq. (2.40)). Time t∗ is then the time point

before the first filled point, which correspond to 30 minutes in Fig. 2.4(a).

DVR can also be interpreted in terms of BPND, which is related to DVR by,

BPND = DVR− 1. (2.41)

BPND compares the concentration of the administered radiotracer in receptor-rich to receptor-

free regions [34]. BPND is proportional to the density of binding sites [3, 34], which denotes the

concentration of the target receptors in ROI. Imaging BPND is therefore a direct quantification
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Figure 2.4: An example of a reference time-activity curve (CREF ) and a ROI time-activity curve

(CT ) in (a), and a corresponding Logan plot in (b).

of the receptors of interest. BPND can also be comprehended in terms of its in vitro equivalence

quantity, BmaxK
′
D, which assesses the capacity of the ROI for radiotracer-receptor binding [35].

This quantity is a product of the total number of receptors (Bmax, i.e., free receptor concentra-

tion in the ROI) and their affinity (K ′D) for the radiotracer [35, 36].

Here, let us take a deeper look into previous methods for bias reduction: Despite

the efficiency and ease of use presented by LGA, further investigations [4, 5, 6, 7] showed that

the estimates of the LGA slope are negatively biased due to the inherent noise in PET data

(tTACs), and that the bias increases with both the noise level and the LGA slope. Due to these

findings, a number of studies have been carried out to try to reduce this bias. The noise in the

LGA variables is specifically due to the noisy term CT (t) in the denominator of both the LGA

variables, as it can be seen in Eqs. (2.26) and (2.40), presenting a correlated errors-in-variables

problem. The bias is then due to that the OLS regression only accounts for the errors in the

response variable, assuming the predictor variable is error-free. This has been analysed in [4].

One approach [11] for addressing the bias problem is that, since OLS does not account for errors

in both variables, ODR, which minimizes the perpendicular distances from data points to the

estimated regression line, does account for errors in both variables and thus would reduce the

influence of the noise in the estimates of the LGA slope. This approach only removed a part
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of the bias, and it came at the cost of precision [16]. The reason to not removing much of the

bias could be due to that ODR is based on the assumption that the variances of the error in

variables are equal, which is generally not the case in practical situations, and specifically not

the case for LGA.

As it is the tradition, assuming that the integral terms in the numerators of Eq. (2.21) are

noise-free, another approach [37] proposed a different method by re-arranging the original LGA

by replacing the noisy term CT (t) in the denominators of Eq. (2.21) by CP (t) and continued as

follows: ∫ t
0 CT (u) du

CP (t)
= (−U TK−1Q + VP )

∫ t
0 CP (u)du

CP (t)
+

U TK−1A

CP (t)

= α

∫ t
0 CP (u)du

CP (t)
+ β. (2.42)

Multiplying through by CP (t) gives,∫ t

0
CT (u) du = α

∫ t

0
CP (u)du+ βCP (t). (2.43)

OLS is then used to estimate DV (slope α) from Eq. (2.43), thus supposedly accounting for

all the noise since the right-hand-side (RHS) of Eq. (2.43) is supposed to be noise-free in this

case. This is because the unintegrated noisy term, CT (t), no longer appears on the RHS of

Eq. (2.43); it does not appear on the left hand side either. This method did not really bring

up about a great improvement, it was shown to be consistent with the classic LGA [37]. This

could be due to that, though these integrals,

∫ t

0
CT (u) du and

∫ t

0
CP (u) du are assumed to be

noise-free, they are actually not; they are only less noisy compared to CT (t), but not noise-free.

It was also pointed out in another study [5] that with this formulation, the true equilibrium

state condition must apply before linearity is achieved, and this generally requires a longer time

compared to the classic LGA formulation, with CT (t) in the denominator.

Another approach, multilinear analysis 1 (MA1) [9, 10], is also a mathematical rearrangement

of the classic LGA equation into a format that would otherwise minimize the error in the LGA

variables. In MA1, Eq. (2.21) is rearranged to bring the noisy term, CT (t), on one side as,

CT (t) = −α
β

∫ t

0
CP (u) du+

1

β

∫ t

0
CT (u) du. (2.44)

OLS can then be used to estimate the regression parameters of Eq. (2.44), and DV would be
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found from the ratio of the regression parameters,
−α
β

and
1

β
, as,

DV = −
(
−α
β

)(
β

1

)
= α. (2.45)

MA1 reduced the bias but did so at the expense of precison [9, 2]. An extension for MA1

is multilinear reference tissue model 2 (MRTM2). MRTM2 can be obtained by multiplying

through Eq. (2.40) by CT (t) to obtain,∫ t

0
CT (u) du = DVR

(∫ t

0
CREF (u) du+

CREF (t)

k̄′REF2

)
+ β∗CT (t), (2.46)

and making CT (t) the subject of the formula gives,

CT (t) = −DVR

β∗

(∫ t

0
CREF (u) du+

CREF (t)

k̄′REF2

)
+

1

β∗

∫ t

0
CT (u) du. (2.47)

OLS can then be used to estimate the regression parameters, −DVR

β∗
and

1

β∗
, and DVR can be

found as,

DVR = −
(
−DVR

β∗

)(
β∗

1

)
= DVR. (2.48)

The GLLS approach [8] is a temporal smoothing method that attempts to denoise tTACs. In

this approach, each noisy tTAC is separated into two, which are then separately fit to two-

compartments (one-tissue) model using GLLS [38]. This method performs well at low noise

level, but large bias and poor precision has been observed at high noise level [39, 8].

Similar to GLLS, the method of PCA denoising [16] is also a temporal smoothing method in

which a PCA-based lower dimension linear model is used to denoise tTACs. PCA would reduce

the noise in tTACs by transforming the tTACs into a feature space with the same dimension-

ality as the original tTACs such that the tTACs could be represented by a reduced number of

dominant features only, while retaining most of the important inherent characteristics of the

original tTACs. In this case, all the noise component in the less important PCs would be lost,

hence reducing the noise in the reduced dimension data set comprised of the most important

PCs [16]. So the source of the correlated errors in the LGA variables is thus minimised. This

method performs considerably well, especially in terms of variance reduction, but there still

remains rooms of improvement in terms bias reduction.
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It is therefore that; OLS is highly biased with moderate precision, ODR removes only a portion

of the bias which comes with poor precision. The GLLS, MA1 and MRTM2 methods are signif-

icantly effective in removing the bias, but this happens at the expense of precision. PCA quite

maintains precision and removes the bias significantly, but leaving a space for further researches

over a wide range of radiotracers, as well as in terms of determining the appropriate number of

PCs. Not withstanding this tremendous effort to reduce the effect of the noise in PET data on

the estimates of the LGA slope, and though some of the methods significantly reduce the bias,

the bias persists and further studies are necessary.

This study takes a two-step approach to address the bias problem. The first step is to reduce

the noise in the LGA estimates from undenoised tTACs. In the second step, the approach

in the first step is employed on denoised tTACs. Specifically, the first step is based on the

demonstrations in [11, 4]. In these studies it can be seen that the regression method used to

estimate the Logan slope influences the resulting bias. On this basis, the ”first step” in this

study approached the LGA bias problem from the EIV perspective by employing an alternative

linear regression method referred to as LSC to estimate the LGA slope. Unlike OLS or ODR,

LSC accounts for the errors in both the predictor and response variables by minimizing the

weighted squared residuals in both the predictor and response variables. Even more, LSC

incorporates the correlation of errors in these variables. Thus, LSC is expected to be appropriate

for correlated errors in the LGA variables. LSC is mathematically superior to both OLS and

ODR, since it is a general solution to the linear least-squares problem, and also because all

other commonly known regression methods, including OLS and ODR, can be derived from LSC

as special cases, under certain assumptions about the statistical properties of the data being

studied. Furthermore, LSC has been shown to improve regression parameter estimates in the

fields of geophysics [12] and biogeosciences [40]. LSC was assessed against MRTM2, which is

the most accepted method, and the conventional OLS-based LGA. In the second step, LSC is

combined with tTACs denoising techniques, PCA and CorrCA.

Ordinary least-squares

Since LGA is a linear equation. Let us first refresh on OLS and ODR regression methods.

OLS regression is a statistical method used to estimate the relationship between one or more

predictor variables and a response variable, by estimating the unknown parameters in a lin-
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Figure 2.5: A schematic figure for OLS.

ear regression model. OLS estimates this relationship by minimizing the total squared errors

[41, 42, 43], i.e., the sum of the squared differences between the observed and the predicted

values of the response variable. Geometrically, this is the sum of the squared distances parallel

to the axis of the response variable, between each scattered data point and the corresponding

point on the estimated regression line. This interpretation can be seen in Fig. 2.5. Since the

LGA is a bivariate system, i.e., one predictor variable and one response variable, henceforward

OLS is presented based on a bivariate system.

Let us define X = {Xi | i = 1, 2, ..., n} and Y = {Yi | i = 1, 2, ..., n} as the predictor and response

variables, respectively. With reference to Fig. 2.5, the OLS line of best fit, y = a+ bx, minimizes

the quantity,

D =

n∑
i=1

d2i

=
n∑
i=1

(Yi − yi)2,

(2.49)
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subject to,

yi = a+ bXi for i = 1, 2, · · · , n, (2.50)

where {yi | i = 1, 2, ..., n} are the estimated data points, lying on the estimated straight line.

Substituting Eq. (2.50) into Eq. (2.49) gives,

D =
n∑
i=1

(Yi − bXi − a)2 . (2.51)

We therefore wish to solve for b and a by minimizing Eq. (2.51).

To minimize Eq. (2.51), consider that,

D =
n∑
i=1

(Yi − bXi − a)2 = D(b, a). (2.52)

We then differentiate Eq. (2.52) with respect to b and a to get,

∂d2

∂b
= −2

n∑
i=1

(Yi − bXi − a)Xi, (2.53)

and

∂d2

∂a
= −2

n∑
i=1

(Yi − bXi − a) . (2.54)

Setting Eq. (2.54) to zero we get,

n∑
i=1

(Yi − bXi − a) = 0

=⇒ a = Ȳ − bX̄,

(2.55)

where X̄ =

n∑
i=1

Xi and Ȳ =

n∑
i=1

Yi.

Setting Eq. (2.53) to zero we get,

n∑
i=1

(Yi − bXi − a) = 0, and substituting for a as per Eq.

(2.55) gives,
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n∑
i=1

(
Yi − bXi − Ȳ + bX̄

)
= 0

=⇒ b

n∑
i=1

(
Xi − X̄

)
=

n∑
i=1

(
Yi − Ȳ

)

=⇒ b =

∑(
Yi − Ȳ

)∑(
Xi − X̄

)

∴ b =

∑(
Yi − Ȳ

) (
Xi − X̄

)∑(
Xi − X̄

)2 .

(2.56)

Thus, Eqs. (2.56) and (2.55) respectively give the OLS estimates of slope b and y-intercept a

of the straight line in Eq. (2.50).

We can see in Eq. (2.49) that OLS only minimizes the squared residuals of the response vari-

able. This is based on the assumption that only the response variable is contaminated with

measurement errors. However in practice, this is not always the case, and specifically for LGA

as described earlier, both variables are contaminated and the contamination in both variables

need to be accounted for.

In order to address the issues encountered with OLS, a variety of regression methods referred

to as EIV have been developed. Before discussing the LSC method which is employed in this

study, let us have a look at one of the EIV methods, ODR, which has been previously applied

to LGA [11].

Orthogonal distance regression

ODR (also referred to as PCA linear regression in some literature, eg., [6]) is an EIV regression

method that was developed to account for errors in both the predictor and response variables by

minimising the perpendicular distances from the estimated regression line to the observed data

points [44, 45], unlike OLS which minimizes the vertical distances. Fig. 2.6 shows a schematic

diagram for ODR.

In ODR, both Xi and Yi measurement are considered to be noisy. Therefore, ODR estimates
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Figure 2.6: A schematic figure for ODR.

the best fit line, y = a+ bx, by minimizing the residuals in both the Xi and Yi measurements

as represented in the equation,

D =
N∑
i=1

(Xi − xi)2 + k(Yi − yi)2, (2.57)

subject to,

yi = bxi + a, (2.58)

where {(xi, yi) | i = 1, 2, ..., n} are the estimated points sitting on the estimated straight line, and

k is the ratio of variances of the errors in the measured data given by σ2xi/σ
2
yi. Note here that

Eq. (2.58) differs from Eq. (2.50), in that Eq. (2.58) has xi instead of Xi which is in Eq. (2.50).

Substituting Eq. (2.58) in Eq. (2.57) gives,

D =
N∑
i=1

(Xi − xi)2 + k(Yi − bxi − a)2. (2.59)

The respective solutions of the slope and y-intercept from Eq. (2.59) are,

b =
(kSyy − Sxx) +

√
(Sxx − kSyy)2 + 4kS2

xy

2kSxy
, (2.60)
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and

a = Ȳ − α′X̄, (2.61)

where Sxx =
∑

(Xi − X̄)2, Syy =
∑

(Yi − Ȳ )2 and Sxy =
∑

(Xi − X̄)(Yi − Ȳ ).

In Eq. (2.60), if we assume that σxi = σyi, then k = 1, and Eq. (2.60) becomes,

b =
(Syy − Sxx) +

√
(Sxx − Syy)2 + 4S2

xy

2Sxy
. (2.62)

Equations (2.62) and (2.61) are the ODR solutions of the slope and y-intercept, respectively.

Thus, ODR is mainly based on this assumption that the variances of the errors in the variables

are equal. Clearly this is not always the case in practical situations, that is why ODR regression

does not make the best regression method. Next, I present LSC linear regression method

according to [13, 14, 12, 46] and show how it can be used to estimate the LGA slope.
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Chapter 3

Reducing the bias in the BPND

estimates using least-squares cubic

linear regression

3.1 Least-squares cubic linear regression

LSC is an EIV-based regression method. Building upon the work of Demming [47], LSC was

developed by Derek York in (1966 [13]), in which he considered the errors in both the predictor

and response variables but not the correlation of the errors in variables. He later (1969 [14])

extended it to take into account the correlation of measurement errors in variables. Further,

in 2004, York and colleagues [12] followed up, and presented compact equations for the slope

of LSC, and unified the the expressions of the standard errors of the slope and y-intercept

with maximum likelihood expressions. LSC fully considers the errors in both the predictor and

response variables [12]. This is achieved by minimizing the sum of weighted squared errors in

both variables, and by including the correlation of these errors [12]. Under specific assumptions,

LSC can be shown to reduce to either OLS or other common regression methods (see Appendix

A), rendering LSC to be a general solution to the linear regression problem [13, 14].

To discuss the mathematical context of LSC, consider the observed predictor and response

variables, X = {Xi | i = 1, 2, ..., n} and Y = {Yi | i = 1, 2, ..., n}, respectively. The LSC slope is
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obtained by minimizing the equation below [12];

S =

n∑
i=1

{
w(Xi)(xi −Xi)

2 − 2riαi(xi −Xi)(yi − Yi) + w(Yi)(yi − Yi)2
} 1

1− r2i
, (3.1)

where (xi, yi) are the estimated points of (Xi, Yi) sitting on the estimated straight line,

and αi =
√
w(Xi)w(Yi). Equation (3.1) includes the residuals in both variables [(xi −Xi),

(yi − Yi)], the weights [w(Xi), w(Xi)], and the correlation of the errors in variables (ri).

Deriving Eq. (3.1)

The derivation of Eq. (3.1) is demonstrated in [46] as follows:

For the respective ith observed and estimated points (Xi, Yi) and (xi, yi), let us denote

the residuals column vector by,

vTi = [u(Xi), v(Yi)] , (3.2)

where, superscript T denotes a transpose, and

u(Xi) = xi −Xi

v(Yi) = yi − Yi.

(3.3)

We can represent the column vector of residual vectors as,

vT = [v(X1) v(Y1) | v(X2) v(Y2) | · · · · · · | v(Xn) v(Yn)]

=
[
vT1 , vT2 , · · · vTn

]
.

(3.4)

Let
(
s2(Xi), s2(Yi)

)
and s(Xi Yi), respectively, denote the variances and covariances

associated with the observed pair (Xi, Yi). The block-diagonal variance matrix is defined
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as,

Q =



s2(X1) s(X1 Y1) 0 0 · · · · · · 0 0

s(X1 Y1) s2(Y1) 0 0 · · · · · · 0 0

0 0 s2(X2) s(X2 Y2) · · · · · · 0 0

0 0 s(X2 Y2) s2(Y2) · · · · · · 0 0

...
...

...
...

. . .
...

...

...
...

...
...

. . .
...

...

0 0 0 0 · · · · · · s2(Xn) s(Xn Yn)

0 0 0 0 · · · · · · s(Xn Yn) s2(Yn)



=



Q1 0 · · · 0

0 Q2 · · · 0

...
...

. . .
...

0 0 · · · Qn


,

(3.5)

in which the 2-by-2 sub-matrices, Q1,Q2, · · · ,Qn, are symmetric. If we refer to

X1, X2, · · ·XN as a finite population of N quantities, the population mean and vari-

ance are respectively given by,

µ =
1

N

N∑
i=1

Xi and σ2 =
1

N

N∑
i=1

(Xi − µ)2 . (3.6)

Given a sample of n quantities from an infinite population, the unbiased estimates of the

mean and variance are respectively,

X̄ =
1

n

n∑
i=1

Xi and s2(X) =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
. (3.7)

The standard deviation is given by the positive square-root of the variance, i.e.,

s(X) =
n∑
i=1

√(
Xi − X̄

)2
n− 1

. (3.8)

For a pair of two samples (Xi, Yi) both of size n, an unbiased estimate of covariance is,

s(XY ) =
1

n− 1

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
. (3.9)
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The block-diagonal weight matrix of the measurements denoted by W is defined by,

W = Q−1



W1 0 · · · 0

0 W2 · · · 0

...
...

. . .
...

0 0 · · · Wn


, (3.10)

in which the 2-by-2 sub-matrices, W1 = Q−11 , W2 = Q−12 , · · · , Wn = Q−1n , are

symmetric. This means that the weight of measurements are given by the inverse of the

variances.

From Eq. (3.5) we can extract the ith variance matrix Qi as,

Qi =

 s2(Xi) s(Xi Yi)

s(Xi Yi) s2(Yi)

 , (3.11)

and the inverse of the ith variance matrix will give the ith weight matrix Wi as,

Wi = Q−1i =
1

s2(Xi)s2(Yi)− s2(XiYi)

 s2(Yi) −s(Xi Yi)

−s(Xi Yi) s2(Xi)

 . (3.12)

The correlation (ri) between a pair of measurements (Xi, Yi) is given by,

ri =
s(XiYi)

s(Xi)s(Yi)
, (3.13)

which gives,

1

s2(Xi)s2(Yi)− s2(XiYi)
=

1(
1− r2i

)
s2(Xi)s2(Yi)

. (3.14)

工学院大学 34 KOGAKUIN UNIVERSITY



PK SHIGWEDHA LSC

Substituting Eq. (3.14) into Eq. (3.12) gives,

Wi =
1

1− r2i



1
s2(Xi)

− ri
s(Xi)s(Yi)

− ri
s(Xi)s(Yi)

1
s2(Yi)


. (3.15)

Expressing the weights as the inverses of the unbiased estimates of the variances we get,

w(Xi) =
1

s2(Xi)
and w(Yi) =

1

s2(Yi)
. (3.16)

We can then write Eq. (3.15) as,

Wi =
1

1− r2i


w(Xi) −ri(αi)

−riαi w(Yi)

 , (3.17)

where,

αi =
√
w(Xi)w(Yi) =

1

s(Xi)s(Yi)
. (3.18)

The least-squares function S in Eq. (3.1) is equal to the sum of weighted squares of

residuals, and can be defined as a matrix product,

S = vTWv. (3.19)

By Eqs. (3.4) and (3.10), we can write S as below,

S = v1
TW1v1 + v2

TW2v2 + v3
TW3v3 + · · ·+ vn

TWnvn, (3.20)
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and using Eq. (3.17) we can write,

vi
TWivi =

1

1− r2i
[v(Xi) v(Yi)]


w(Xi) −ri(αi)

−riαi w(Yi)




v(Xi)

v(Yi)


=

1

1− r2i

{
w(Xi)(v(Xi))

2 − 2riαv(Xi)v(Yi) + w(Yi)(v(Yi))
2
}

=
1

1− r2i

{
w(Xi)(xi −Xi)

2 − 2riα(xi −Xi)(yi − Yi) + w(Yi)(yi − Yi)2
}
.

(3.21)

Summing over i = 1, 2, · · · , n gives,

S =
n∑
i=1

1

1− r2i

{
w(Xi)(xi −Xi)

2 − 2riα(xi −Xi)(yi − Yi) + w(Yi)(yi − Yi)2
}

(3.22)

as in Eq. (3.1).

Solving for the least-squares cubic line of best fit

The line of best fit y = a+ bx minimizes the sum of the weighted squares of residuals [13, 14].

The adjusted/estimated points (xi, yi) of the measurements (Xi, Yi) are required to lie on the

estimated straight line, and therefore the regression parameters a, and b can be obtained by

minimizing S (Eqs. (3.22) and (3.1)) subject to the constraints that,

yi = a+ bxi for i = 1, 2, · · · , n. (3.23)

It is shown in [46] how this task can be achieved using the Lagrange multipliers optimization.

The function to be minimized is the Lagrangian L written as,

L = S + 2
∑
i

λi (a+ bxi − yi) , (3.24)

where λi are unknown Lagrange multipliers. The Lagrangian, L, has five variables, λi, a,

b, xk, and yk, and can be minimized by setting its first partial derivatives to zero as below,

∂L

∂λi
=
∂L

∂a
=
∂L

∂b
=
∂L

∂xi
=
∂L

∂yi
= 0. (3.25)
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Working out the zero-equated partial derivatives in Eq. (3.25) gives,

∂L

∂λi
= 2

∑
i

(a+ bxi − yi) = 0

∂L

∂a
= 2

∑
i

λi = 0

∂L

∂b
= 2

∑
i

λix = 0

∂L

∂xi
=
∑
i

1

1− r2i
{2w(Xi)(xi −Xi)− 2riαi(yi − Yi)}+ 2

∑
i

λib = 0

∂L

∂yi
=
∑
i

1

1− r2i
{2w(Yi)(yi − Yi)− 2riαi(xi −Xi)} − 2

∑
i

λi = 0.

(3.26)

In order, the expressions in Eq. (3.26) gives,

yi = a+ bxi (3.27)

λi = 0 (3.28)

λix = 0 (3.29)

w(Xi)(xi −Xi)− riαi(yi − Yi) + λi(1− r2i )b = 0 (3.30)

w(Yi)(yi − Yi)− riαi(xi −Xi)− λi(1− r2i ) = 0, (3.31)

for each i.

Respectively solving for xi −Xi and yi − Yi from Eqs. (3.30) and (3.31) gives,

xi −Xi =
1

α2
i

(riαiλi − bw(Yi)λi) =⇒ xi = Xi +
1

α2
i

(riαiλi − bw(Yi)λi) (3.32)

yi − Yi =
1

α2
i

(w(Xi)λi − briαiλi) =⇒ yi = Yi +
1

α2
i

(w(Xi)λi − briαiλi) . (3.33)

Substituting Eqs. (3.32) and (3.33) into Eq. (3.27) and solving for the Lagrange multipliers

gives,

λi = Wi(a+ bXi − Yi), (3.34)

where Wi is the weight function given by,

Wi =
α2
k

b2w(Yi) + w(Xi)− 2briαi
. (3.35)
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Substituting Eq. (3.34) into Eqs. (3.28) and (3.29), respectively, gives,

∑
Wi(a+ bXi − Yi) = 0 (3.36)

and ∑
xiWi(a+ bXi − Yi) = 0. (3.37)

Expanding Eq. (3.36) and solving for a gives,

a =

∑
WiYi∑
Wi

− b
∑
WiXi∑
Wi

(3.38)

∴ a = Ȳ − bX̄, (3.39)

where (X̄, Ȳ ) is the Centroid of the data:

X̄ =

∑
WiXi∑
Wi

, Ȳ =

∑
WiYi∑
Wi

. (3.40)

Equations (3.38) and (3.39) mean that, according to the LSC approach, the best straight line

goes through the centroid/center of gravity of the data set given by (X̄, Ȳ ) in Eq. (3.40).

Let us define the centroidal coordinates (Ui, Vi) as,

Ui = Xi − X̄, Vi = Yi − Ȳ . (3.41)

Then we can write Eq. (3.39) as

a+ bXi − Yi = a+ b(Ui + X̄)− (Vi + Ȳ )

= a+ bUi + bX̄ − Vi − Ȳ

= bUi − Vi

(3.42)

Respectively substituting Eq. (3.42) into Eqs. (3.34) and (3.37), we get,

λi = Wi(bUi − Vi) = 0 (3.43)

and ∑
Wi(bUi − Vi) = 0. (3.44)
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Substituting Eqs. (3.32), (3.42), (3.43), and (3.44) into Eq. (3.37), gives,

b3
∑ W 2

i

w(Xi)
U2
i − b2

∑
W 2
i

(
ri
αi
Ui +

2

w(Xi)
Vi

)
Ui

− b
∑

Wi

(
U2
k

2Wiri
αi

UiVi −
Wi

w(Xi)
V 2
i

)
+
∑

Wi

(
Ui −

Wiri
αi

Vi

)
= 0.

(3.45)

Equation (3.45) is referred to as the Generalized least-squares cubic regression [14, 12].

Being a general solution to the least-squares problem means that all other known regression

methods, like ODR and OLS can be obtained from Eq. (3.45) as special cases, under specific

assumptions. In addition, the solution obtained by York in [13] in which it is assumed that

the errors in the variables are uncorrelated can also be obtained from Eq. (3.45) by setting ri

to zero. The “cubic” in “Generalized least-squares cubic regression” refers to that Eq.

(3.45) is a cubic (or rather pseudo-cubic, as explained below) equation of b.

The pseudo-cubic equation:

Equation (3.45) is not really a cubic equation of b because the qantity Wi (Eq. (3.35))

and the centroidal coordinates (Ui, Vi) (Eq. (3.41)) are functions of b. However, this

pseudo-cubic equation can be reduced to a truc cubic equation by substituting in an

approximate value for b in the weight function Wi. From there, it can then be solved

directly as a cubic equation, giving three roots for b.

A concise solution for b is given in [12]. It was obtained by first reducing Eq. (3.45) to a

quadratic equation as,

b2
∑

W 2
i

(
UiVi
w(Xi)

− rU2
i

αi

)
+ b

∑
W 2
i

(
U2
i

w(Yi)
− V 2

i

w(Xi)

)
−
∑

W 2
i

(
UiVi
w(Yi)

− rV 2
i

αi

)
= 0,

(3.46)

and subsequently to a linear equation as,

b
∑

W 2
i

(
Ui

w(Yi)
+

bVi
w(Xi)

− briUi
αi

)
Ui −

∑
W 2
i

(
Ui

w(Yi)
+

bVi
w(Xi)

− riVi
αi

)
Vi = 0. (3.47)

The slope coefficient, b, can then be obtained from Eq. (3.47) as,

b =

∑
W 2
i

(
Ui

w(Yi)
+ bVi

w(Xi)
− riVi

αi

)
Vi∑

W 2
i

(
Ui

w(Yi)
+ bVi

w(Xi)
− briUi

αi

)
Ui
. (3.48)
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Further, as shown in [46], Eq. (3.47) can be written as,

b
∑

WiUiWi

(
Ui

w(Yi)
+

bVi
w(Xi)

− briUi
αi

)
− b

∑
WiUiWi

(
riVi
αi

)

=
∑

WiViWi

(
Ui

w(Yi)
+

bVi
w(Xi)

− riVi
αi

)
− b

∑
WiUiWi

(
riVi
αi

)
,

(3.49)

which can be further simplified to give the expression,

b
∑

WiUiWi

(
Ui

w(Yi)
+

bVi
w(Xi)

− ri
αi

(bUi + Vi)

)
=
∑

WiViWi

(
Ui

w(Yi)
+

bVi
w(Xi)

− riVi
αi

(bUi + Vi)

)
.

(3.50)

The LSC slope parameter, b, can then be expressed in simplified terms as,

b =

∑
WiβiVi∑
WiβiUi

. (3.51)

where βi is given by,

βi = Wi

(
Ui

w(Yi)
+

bVi
w(Xi)

− (bUi + Vi)
ri
αi

)
. (3.52)

LSC solution for the slope, b, and y-intercept, a:

b =

∑
WiBiVi∑
WiBiUi

from Eq. (3.51)

a = Ȳ − bX̄ from Eq. (3.39)

Respective variances of a and b:

σ2b =
1∑
Wiu2i

σ2a =
1∑
Wi

+ x̄2σ2b

(3.53)

Estimated/adjusted points (xi, yi):

xi = X̄ + βi

yi = Ȳ + bβi

(3.54)
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Residuals (xi, yi):

v(Xi) = xi −Xi = βi − Ui

v(Yi) = yi − Yi = bβi − Vi

(3.55)

x̄ in Eq. (3.53), and the corresponding ȳ are respectively given by,

x̄ =

∑
Wixi∑
Wi

and ȳ =

∑
Wiyi∑
Wi

, (3.56)

where,

ui = xi − x̄ and vi = yi − ȳ. (3.57)

Here let us again note that Wi itself (which is a function of b), and βi, Vi and, Ui, which are all

functions of Wi (and therefore functions of b) appear in Eq. (3.51). Therefore an appropriate

approximate value for b shoul be substituted in Wi so that Eq. (3.51) can be used to estimate

b. In this study, the approximate value which was substituted in Wi was estimated by OLS.

For improved estimates of b, the estimates were iterated. A complete mathematical feature of

LSC is provided in [46].
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Figure 3.1: An illustration of LSC regression: LSC for a general Y vs X. The observed point

(Xi, Yi) is projected onto the estimated point (xi, yi), making a residual di.
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Figure 3.2: An illustration of LSC regression: LSC visualized in terms of the LGA variables.

The main point is that the direction along the minimization distance is not restricted to being

either vertical (as is for OLS) or perpendicular (as is for ODR), but may vary depending on the

value of

∫
CT (u) du∫
CP (u) du

ξ/ξ =

∫
CT (u) du∫
CP (u) du

, as implied in Eq. (3.58).
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Analysing least-squares cubic regression in terms of the Logan

graphical analysis

Figure 3.1 shows a schematic diagram for a general LSC regression of Y vs X, and Fig. 3.2

expresses LSC specifically in terms of the LGA variables.

To explain LSC in specific terms of LGA, let us consider the LGA in Eq. (2.21). If the

two integral terms,

∫
CP (u) du and

∫
CT (u) du , are free from measurement errors, then all

the errors in the LGA variables,

∫
CT (u) du

CT (t)
, and

∫
Cp(u) du

CT (t)
, in Eq. (2.21) are entirely due

to CT (t). Accordingly, the errors in these two LGA variables will be perfectly correlated, i.e.,

ri = 1. The assumption that the integral terms are noise-free is based on the fact that integrated

measurements has less noise than the discrete data. To simplify the explanation, we assume

this is the case. Given the above, lets us say the value of

∫
CP (u) du

CT (t)
at point H in Fig. 3.2

has an error of ξ due to CT (t) error, then, according to York in [13], the value of

∫
CT (u) du

CT (t)

will have an error of

∫
CT (u) du∫
CP (u) du

ξ due to that same CT (t) error. Now, the observed point H is

shifted from the true point H ∗ along a line with a slope given by,

∆Y

∆X
=

∫ t
0 CT (u) du∫ t
0 CP (u) du

ξ

ξ

=

∫ t
0 CT (u) du∫ t
0 CP (u) du

.

(3.58)

In a less compact format than Eq. (3.55), the LSC residuals can be expressed as,

xi −Xi =
Wi (a+ bXi − Y ) (riαi − bw(Yi))

w(Xi)w(Yi)

yi − Yi =
Wi (a+ bXi − Y ) (w(Xi)− briαi)

w(Xi)w(Yi)
.

(3.59)

Using Eq. (3.59), the slope of the straight line connecting points H and H ∗ in Fig. 3.2 is given

by,

dslope =
Yi − yi
Xi − xi

=
y-residual

x-residual

=
w(Xi)− briαi
riαi − bw(Yi)

.

(3.60)
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Under the assumption that the errors are perfectly correlated, we have, r = 1, and Eq. (3.60)

becomes,

dslope =
w(Xi)− b

√
w(Xi)w(Yi)√

w(Xi)w(Yi)− bw(Yi)

=

√
w(Xi)

w(Yi)
.

(3.61)

From Eq. (3.58) we have that,

error inX measurement

error in Y measurement
=

error in
∫ t
0 CT (t) du

C(t)

error in
∫ t
0 CP (t) du

C(t)

=
∆Y

∆X
=

∫ t
0 CT (t) du∫ t
0 CP (t) du

, (3.62)

and by using the definition of the weights as the inverse of the squared errors, we get that,

√
w(Xi)

w(Yi)
=

1/

(
error in

∫ t
0 CP (t) du

C(t)

)
1/

(
error in

∫ t
0 CT (t) du

C(t)

)

i

=
error in

∫ t
0 CT (t) du

C(t)

error in
∫ t
0 CP (t) du

C(t)


i

=

∫ t
0 CT (t) du∫ t
0 CP (t) du

]
i

, (3.63)

i.e., √
w(Xi)

w(Yi)
=

∫ t
0 CT (t) du∫ t
0 CP (t) du

]
i

. (3.64)

Equation (3.61) serves to inform that the residuals are not necessarily, vertical, horizontal or

perpendicular to the estimated straight line. They can be at any angle which is defined by their

slope. We see in Eq. (3.61) that the slope of the residuals is dependent on the weight functions.

This means that the weights will serve to determine the direction in which the observed mea-

surements should be adjusted.

To put it into perspective, for the unweighted OLS, w(Yi) = 1 and w(Xi) = 0, and therefore

dslope = inf. This means that the residuals of the OLS regression are in the vertical direction,

which is exactly the case for OLS, minimizing only the errors in the Y measurements.

Equation (3.64) shows how the weights —when assumed to be the inverse of measurement

errors— relate to the integral terms in the LGA variables. Given that the errors in measured

data are practically unknown, the aim is to define the weight functions such that they satisfy

the relationship in Eq. (3.64).
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The weights [w(Xi), w(Yi)] and the correlation of the errors ri

The variances in the measurements are not known, and therefore the weights cannot be directly

calculated by,

w(Xi) =
1

s2(Xi)
and w(Yi) =

1

s2(Yi)
. (3.65)

This study adopted the method of “relative error regression” [48, 49]. In relative error regression,

instead of minimizing the squared-sum of the absolute errors,
∑

(yi − Yi), the squared-sum of

the relative errors,
∑(

yi − Yi)/Y 2
i

)
, is minimized. In statistical prediction, relative errors are

considered to be more informative than absolute errors [49]. Expressing the relative errors in

this manner can help adjust measurements in a weighted linear regression with the weights

given by, 1/Y 2
i [48, 49]. After adopting this technique for LSC, the X and Y weights can be

respectively given as,

w(Xi) =
1

X2
i

and w(Yi) =
1

Y 2
i

. (3.66)

These weight functions suffices for the LSC-based LGA since they satisfy Eq. (3.64) as below,√
w(Xi)

w(Yi)
=

√
1/X2

i

1/Y 2
i

=
Yi
Xi

=

∫
CT (ti) du/CT (ti)∫
CP (ti) du/CT (ti)

=

∫
CT (ti) du∫
CP (ti) du

.

(3.67)

The correlation of the errors were estimated by the correlations between the variables them-

selves. These correlations were estimated by the correlations of determination. The correlation

of determination is a number between 0 and 1, and it determines the proportion of variation in

the response variable that can be explained by the predictor variable [50, 51]. To iterate, the

slope obtained in the first run was substituted in Wi and βi. The iteration process was repeated

until the relative differences between consecutive estimates of the slope, (bj − bj+1) /bj+1, were

less than 10−10.

In summary, as per [12], here is how one would carry out the estimation of the regression

parameters by LSC;
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1. Begin by obtaining an approximate initial value for b. In this study, it was obtained by

OLS.

2. Approximate the weights, w(Xi) and w(Yi), for each point, and the correlation between

the errors in measurements, ri. In this study, the weights were obtained by Eq. (3.66),

and ri was estimated by the correlation between the measurements themselves.

3. Using the weights, the initial approximate for b and the correlation, ri, evaluate Wi for

each point.

4. Calculate X̄ and Ȳ by Eq. (3.40), calculate Ui and Vi by Eq. (3.41), and then calculate

βi by Eq. (3.52), for each point.

5. Using Wi, Ui, Vi, and βi, calculate b by Eq. (3.51).

6. Now use the new b in step 5 as the initial estimate and repeat steps, 3, 4, and 5 until

consecutive estimates of b converges to some desired condition.

7. With this final value of b, together with the final X̄ and Ȳ , calculate a by Eq. (3.39).

8. For each (Xi, Yi), calculate the adjusted/estimated points, xi and yi, by Eq. (3.54).

9. Use the estimated points, (xi, yi), and Wi to calculate (x̄, ȳ) by Eq. (3.56), and then

calculate (ui, vi) by Eq. (3.57).

10. Using Wi, x̄ and ui , calculate σb, and then σa by Eq. (3.53).

3.1.1 Simulation studies

Simulation data design

In order to assess the performance of LSC against that of MRTM2 and conventional LGA

when estimating BPND, a set of PET data of a two-tissue compartmental model was simulated

using a clinically measured pTAC. The simulated data mimicked a well-known radiotracer,

11C-carfentanil (CFN), which is a reversible radiotracer that binds to µ-opioid in the brain.

The kinetic parameters, K1, k2–4, and the non-displaceable distribution volume (VND) used for

simulations were adopted from a range of values used in a previous study [52];

• 11 values of BPND were set in the range of [0.0, 3.0], covering a range of [0.0, 0.35] for

k3.
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• [K1 k4] = [0.1835 mL cm−1 min−1 0.115/min].

• [k2 k3] = [K1/VND BPND · k4].

• VND = 1.59 mL cm−1.

Simulated data were made for a 90 min, 33-frame scan (6 × 0.1667 min, 3 × 0.5 min, 5 × 1 min,

5 × 2.5 min, and 14 × 5 min). The reference region was formed with a zero noise level, zero

BPND, and delivery and clearance rates equal to those of the target tissues, due to its physio-

logical assumptions. Using these kinetic parameter values, 11 noise-free tTACs corresponding

to the 11 BPND values were formed. Statistical noise was added to these noise-free tTACs, and

1024 noisy tTACs were simulated as a slice of 32-by-32 pixels for each noise-free tTAC. The

BPND values were then re-estimated from the noisy tTACs by LSC, MRTM2, and conventional

LGA, and the results were compared. The true value for the dissociation rate of the reference

region (kR2 ), which was used to produce the simulation data, was used for all methods.

The noise was assumed to have a zero-mean Gaussian distribution with a variance proportional

to the true tTAC; this is the same to the noise model used in previous studies [6, 8, 16, 11]. The

noise scaling factor was set such that the actual magnitude of the noise level in the simulated

tTACs varied within a range of 0 to 30%; this range covered the actual noise observed in voxel-

based PET data. The magnitudes of the noise level were calculated by the percentage of the

ratios of the “standard deviation of the noisy tTACs” to the “mean of the noise-free tTAC” for

the portion of the time range used for the BPND estimations.

Results

Figure 3.3 shows the simulated noise-free (thick lines) and their corresponding noisy (thin lines)

tTACs for the 11 BPND values. The 12th blue curve at the bottom is the curve of the reference

region. Out of the the 1024 simulated noisy tTACs, only one is shown in Fig. 3.3 for each

noise-free tTAC.

The results in Fig. 3.4 compares the percentage bias (difference from 100%) in the BPND val-

ues estimated by three methods, LSC, MRTM2 and OLS, from the noisy tTACs. The standard

deviations (in percentages) are shown as error bars. In these results, LSC estimates are the

least biased along the entire range of BPND, with up to a maximum of 12% and 28% bias
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Figure 3.3: Simulated tTACs. The 12 thick curves denote the noise-free tTACs. Eleven of these

correspond to the 11 BPND values. The remaining one (lowermost) represents the reference

region. The thin curves denote the noisy tTACs. Only one noisy tTAC is shown out of the 1024

simulated noisy tTACs for each of the noise-free tTACs.

difference in comparison with MRTM2 and conventional OLS-based LGA, respectively. The

error bars show that while the conventional LGA estimates have the smallest variability, LSC

estimates have smaller variability than MRTM2 estimates. With the above, it can be seen that

LSC outperforms MRTM2 in terms of both bias and variance, i.e., LSC estimates have both

smaller bias and variance than MRTM2 estimates.

Figure 3.5 shows the distributions of the errors obtained from LSC- and OLS-based LGAs.

The errors for OLS refers to the y-residuals. The errors for LSC are calculated as a sum of

Eqs. (3.27–3.31), which makes the condition for the minimization term to equate to zero. The

histograms in Fig. 3.5 are for residuals of only 8 random of the simulated tTACs. In this figure,

it can be seen that LSC estimates make a better normal distribution —both in terms of the
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Figure 3.4: Comparisons of the percentage bias and variability in the estimated BPND values.

The percentage bias and variability in the BPND estimated from the noisy tTACs by LSC,

MRTM2, and conventional LGA, are compared for the 11 values of true BPND.

bell shape and in terms of narrowness— in comparison to those of OLS. Figure 3.6 shows the

histograms of the errors of all 1024 simulated tTACs for BPND = 3 —a further confirmation of

the results in Fig. 3.5.

3.1.2 Clinical 11C-PiB PET data studies

Study design

Two 11C-PiB PET data sets, of which one is Aβ-negative and the other is Aβ-positive, were

used for this analysis. The two participants underwent a 11C-PiB PET scan for 70 minutes with

25 frames (6 × 0.1667 min, 3 × 0.3333 min, 2 × 1 min, 2 × 3 min, and 12 × 5 min). The scan

was carried out according to the standard ADNI 11C-PiB PET procedure. The study protocol

was approved by the Ethics Committee of Kindai University Hospital, and written informed
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consent was obtained from the participants.

The data were collected in arrays of 128 voxels × 128 voxels × 47 slices, with voxel sizes of

2.1 × 2.1 × 3.4 mm3. BPND parametric images – reflecting Aβ deposits in the brain regions –

were then generated using three algorithms, LSC, MRTM2, and conventional OLS-based LGA,

implemented in MATLAB (The MathWorks, Inc., Natick, MA, United States).

Time t∗(30 min.), which was used for both synthetic and actual data, was graphically deter-

mined from simulated data.

For the actual data, the values of kR2 that were used for all methods were estimated by MA1.

MA1 allows estimation of kR2 with little bias [10]. Specifically for each slice, the average value,

k̄R2 , calculated from the | kR2 | of all voxels in the reference region, was used.

Results

Figure 3.7 shows the BPND parametric images obtained by the three methods, LSC, MRTM2,

and conventional OLS-based LGA. These images are generated from 11C-PiB PET brain im-

ages, and therefore they reflect Aβ deposits in the brain regions. The left panel shows images

of three slices of the Aβ-negative patient, obtained by each of the three methods, whereas the

right panel shows the images of the Aβ-positive patient.

In Fig. 3.7, the images obtained by LSC have significantly higher total BPND estimates than

those of conventional OLS-based LGA for both patients. The images obtained by MRTM2 have

the highest total BPND estimates. For MRTM2 images, however, considerably higher levels of

noise are observed. These results are consistent with those of CFN observed in the simulated

data.

Table 3.1 shows the average computational time taken by each method for the corresponding

sets of three images in Fig. 3.7. LSC took moderate computational time, one order of magnitude

higher than conventional OLS-based LGA, for both patients’ images. This was expected of LSC

because it is an iterative procedure. MRTM2 took the longest computational time amongst the

three methods, two orders of magnitude higher than conventional OLS-based LGA, for both
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Table 3.1: Means (± standard deviations) of computational times taken by each method for

the respective slice images in Fig. 3.7.

Human data computational time (seconds)

L R

LSC 0.161 ± 0.033 0.156 ± 0.016

MRTM2 1.045 ± 0.031 1.014 ± 0.031

LGA 0.073 ± 0.024 0.083 ± 0.009

The two columns indicated by L and R denote the left and right panel images, respectively.

patients’ images.
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(a)

(b)

Figure 3.6: Comparison of the distributions of LSC errors (a) against OLS errors (b) for all

1024 simulated noisy tTACs for BPND = 3.
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Figure 3.7: Axial slice images of brain regions obtained by three methods, LSC, MRTM2, and

conventional OLS-based LGA. These are BPND images of Aβ quantification of 11C-PiB brain

PET data of the two patients. The left panel shows the images of the Aβ-negative patient, and

the right panel shows the images of the Aβ-positive patient.
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3.2 Discussion

The results in the above analysis shows that LSC estimates of the BPND emerged to be less

biased than those of MRTM2 and conventional OLS-based LGA. In addition, it was also seen

that LSC estimates have smaller variations in comparison with those for MRTM2, providing a

better trade-off between bias and variability.

The underestimation which is observed in the simulated data for conventional OLS-based LGA

estimates is also reflected in the real data, and accordingly, the reduction of the underestimation

seen in the simulated data for the LSC method is also reflected in the real data. Furthermore,

the underestimations observed for conventional OLS-based LGA method in both simulation and

human data studies are in consistency with previous studies [33, 52], and this strengthens the

reliability of the results reported here.

Both LSC and OLS are based on the assumption that the errors in the measurements are nor-

mally distributed. However, this assumption may not always be satisfied. A visual inspection

of the distributions of the LSC error values and the OLS residuals —in Figs. 3.5 and 3.6—

showed that the LSC error values have a better normal distribution compared with that of the

OLS residuals. This can be attributed to the fact that LSC takes into account the varying

magnitude of errors at each data point as demonstrated in [14].

LSC considers the errors in both variables without altering the original LGA equation, thus

maintaining its simplicity and inducing less variability. In addition, LSC does not only consider

the errors associated with term CT (t), but also the errors associated with each LGA variable

as a whole. The effort to include more details in LSC has increased the number of terms in Eq.

(3.1), compared with the fundamental OLS regression in Eq. (2.49), which only comprises the

residuals of the response variable. This could be a factor in the slight increase in the variability

of LSC-based estimates compared to conventional OLS-based LGA estimates.

MRTM2 rearranges the conventional LGA equation into a multilinear regression form so that

the noted noisy term, CT (t), only appears in the response variable [9, 10]. This only considers

the errors associated with CT (t). However, the rest of the terms in the LGA equation are not

entirely noise-free; they are less noisy compared with CT (t). Not considering the noise in the
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rest of the terms could lead to the bias in the MRTM2 estimates.

Based on the computational times of the three methods for obtaining slice images, the con-

ventional LGA has the highest computational efficiency, followed by LSC, and then MRTM2.

The computation time for LSC would depend on the number of iterations, which in turn de-

pends on the iteration condition, with the computation time increasing with the number of

iterations. All LSC images in Fig. 3.7 required at most three iterations. The iteration limit-

ing condition in this study, (α′i − α′i+1)/α
′
i+1 < 10−10, was arbitrarily chosen. However, it was

found that by choosing a stricter condition, say 10−11, the number of iterations did not increase.

Although the weighting formulas in Eq. (3.66) are inverse squares of the measurements, they

will not cause the usual problem of overproportional weighting of smaller measurements. This

is because they are not the direct weighting coefficients. The final weighting coefficients are ap-

pearing in Eq. (3.51) as WiBi. Because they appear in both the numerator and denominator,

the overprortional weighting effect can be canceled out.

The proposed method, LSC-based LGA, significantly reduced the bias in the estimates of BPND,

up to 12 and 28% difference compared with MRTM2 and conventional OLS-based LGA, respec-

tively. Considering the conventional OLS-based LGA as the standard method, LSC reduced

the bias at a slight expense of increased variation. However, LSC caused smaller variations and

required shorter computation times than MRTM2. Thus, LSC outperformed MRTM2 in all

aspects (bias, variability, and computational efficiency).

工学院大学 57 KOGAKUIN UNIVERSITY



Chapter 4

Tissue time-activity curves denoising

techniques for improving image

contrast

4.1 Principal component analysis

PCA is a dimensionality reduction technique that is mostly used for feature extraction and noise

filtering. The fundamental idea of PCA is to represent the data in a reduced dimension while

preserving as much variance as possible, i.e., reducing a large data set of variables to a smaller

set that retains most of the important information in the original data set. PCA transforms

variables into new sets of variables that are linear functions of the original variables [15, 53, 54].

The new set of variables are uncorrelated and are defined by a set of orthogonal basis vectors

and PCs that optimally describe the variance in the data. That is, the first PC describes the

largest variance in the data. The second PC is orthogonal to the first PC and describes the

largest of the remaining variance. It goes on until the last PC – orthogonal to all earlier PCs –

that describes the least variance than all other PCs. The orthogonal basis vectors and the cor-

responding variance are found by solving for the eigenvalues and eigenvectors of the covariance

matrix of the data. The eigenvectors are the orthogonal basis vectors, and the eigenvalues are

the corresponding variances.

In dimension reduction, one keeps only the projections along the dimensions of the first few

largest PCs. This gives a reduced dimensional projection that maintains most of the important
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information of the original variables, allowing for a simpler interpretation.

In noise filtering application, one attempts to recover the original variables using the lower-

dimensional projections. This results in denoised estimates of the original variables. The idea

is that the larger PCs correspond to the dimensions with most of the signals of interest and less

noise. On the other hand, smaller PCs correspond to the dimensions with much of the unwanted

noise and less of the signal of interest. Thus, reconstructing the data using only the few largest

PCs, preserves the signals of interest whilst throwing away the unwanted noise signals.

Let us denote the PET brain volume data C to be made up of R tTACs with p frames. Then

we can write,

C =



c1(t1) c1(t2) . . . c1(tp)

c2(t1) c2(t2) . . . c2(tp)

...
...

. . .
...

cR(t1) cR(t2) . . . cR(tp)


R×p

=
[
C(t1) C(t2) . . . C(tp)

]
(4.1)

Applying PCA to the data matrix C, it finds a set of p × p vectors, V ∈ Rp×p. These vectors

are simply the eigenvectors of the covariance matrix of the mean-centered data, C0. Using only

the first k (k ≤ p) eigenvectors, a new set of denoised original variables can be estimated by,

Â = (C0W)W′ + C̄, (4.2)

where, W = V(:, 1 : k) ∈ Rp×k, is the set of the first k eigenvectors. C̄ ∈ R1×p is the mean vector

of C. The eigenvectors define the directions of the PCs, Z ∈ RR×p, which can be expressed as,

Z = (C0W). (4.3)

Therefore, using the first few k eigenvectors can also be referred to using the first few k PCs.

In this study, the number of PCs, k, that were retained to estimate the denoised data were such

that specified amount of percentage variance could be realized from them. Specifically, the two

methods LSC–PCA and OLS–PCA were evaluated at two levels of percentage variance, 95%

and 97%.
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Mathematics of PCA

Given our data matrix C ∈ RR×p, the aim is to find a linear combination of the columns

of matrix C with maximum variance [15]. Let us denote these linear combinations by Z,

i.e., the first PC Z1 is defined as,

Z1 = Ca1

=

p∑
i=1

ai1C(ti),

(4.4)

where a1 is a vector of constants coefficients,
[
a11 a21 . . . ap1

]
∈ R1×p.

In general, the kth PC can be expressed as,

Zk = Cak

=

p∑
i=1

aikC(ti).

(4.5)

Equation (4.4) is subject to ”var(Z1) is maximum”, and therefore Eq. (4.5) is subject

to ”var(Zk) is maximum”. Further, the PCs are such that they are uncorrelated with

each other (i.e., cov(Zk, Zl) = 0 | k > l ≥ 1), and ak has a unit length (i.e., aTk ak = 1)

[53, 15].

The variance of the first PC is given by,

var(Z1) = 〈Z2
1 〉 − 〈Z1〉2

=

p∑
i,j=1

ai1aj1〈C(ti)C(tj)〉 −
p∑

i,j=1

ai1aj1〈C(ti)〉〈C(tj)〉

=

p∑
i,j=1

ai1aj1Sij

= aT1 Sa1,

(4.6)

where S is the sample covariance matrix, and Sij is the covariance of C(ti) and C(tj),

respectively given by,

S =
1

R− 1
CT

0 C0 (4.7)
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and

Sij = 〈C(ti)C(tj)〉 − 〈C(ti)〉〈C(tj)〉 = σC(ti)C(tj). (4.8)

Identifying the linear combination with maximum variance, var(Z1), is equivalent to

maximizing the equation below [15],

aT1 Sa1 − λ1(aT1 a1 − 1), (4.9)

where λ1 is a Lagrange multiplier. Differentiating Eq. (4.9) with respect to a1 and

equating to zero gives,

Sa1 − λ1a1 = 0

(S− λ1Ip)a1 = 0

=⇒ Sa1 = λ1a1,

(4.10)

where Ip is a p× p identity matrix. Equation (4.10) implies that a1 is a unit-norm

eigenvector, whereas λ1 is the corresponding eigenvalue of the covariance matrix S [15].

λ1 is the largest eigenvalue of S, and thus the first pricipal component Z1 accounts for

the largest of variances in the data [53].

The second vector of coefficients, a2 =
[
a12 a22 . . . ap2

]
∈ R1×p, is found by max-

imizing the variance, var(Z2), of the of the second PC, Z2 —under the constraints

cov(Z2, Z1) = 0 and aT2 a2 = 1. The variance of Z2, and the covariance of Z1 and Z2

are respectively given by,

var(Z2) = aT2 Sa2, (4.11)

and

cov(Z1, Z2) = aT1 Sa2

= λ1a
T
1 a2 (using Eq. (4.10)).

(4.12)

Maximizing var(Z2) under the aforementioned constraints equates to [15],

aT2 Sa2 − λ2(aT2 a2 − 1)− φaT2 a1, (4.13)
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where λ2 and φ are Langrage multipliers. Differentiating Eq. (4.13) with respect to a2

gives,

Sa2 − λ2a2 − φaT1 a1 = 0. (4.14)

Multiplying through Eq. (4.14) on the left by aT1 we obtain,

aT1 Sa2 − λ2aT1 a2 − φaT1 a1 = 0. (4.15)

From Eq. (4.15) we notice that aT1 Sa2 = λ2a
T
1 a2 = 0 and aT1 a1 = 1, and thus φ = 0.

Equation (4.15) can then be written as,

Sa2 − λ2a2 = 0

=⇒ (S− λ2Ip)a2 = 0.

(4.16)

Equation (4.16) implies that a2 is also an eigenvector of the covariance matrix S,

whereas λ2 is the corresponding eigenvalue. λ2 is the second largest eigenvalue of S,

and thus the second pricipal component, Z2, accounts for the second largest of variances

in the data [53].

Generally, the variance of the kth PC Zk is given by,

var(Zk) = aTk Sak, (4.17)

and maximizing var(Zk) under the aforementioned constraints, ({cov(Zk, Zl) = 0 | k >

l ≥ 1}, and {aTk ak = 1 | k = 1, 2, · · · , p}), we get the kth eigenvector (ak) and the

corresponding eigenvalue (λk). In the same way as the eigenvectors and eigenvalues for

the first and second PC, λk is the kth largest eigenvalue of the covariance matrix S, and

the kth PC, var(Zk), accounts for the kth largest fraction of the variance in the data [53].

In total, with our data matrix, C =
[
C(t1) C(t2) . . . C(tp)

]
∈ R× p, we define the

PCs as, Z =
[
Z1 Z2 . . . Zp

]
∈ R× p, such that,

Z = CV, (4.18)
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where,

V =



a11 a21 . . . ap1

a12 a22 . . . ap2
...

...
. . .

...

a1p a2p . . . app


p×p

, (4.19)

is an orthogonal matrix, whose columns are the eigenvectors of the of S.

The original matrix can be re-estimated from the PCs by,

Ĉ = ZV′

= (CV)V′

(4.20)

If the PCs are calculated using the mean-centred data, C0, (i.e., Z = C0V), then Eq.

(4.20) becomes,

Ĉ = (C0V)V′ + C̄. (4.21)

Employing only the first few eigenvectors, W = V(:, 1 : k), Eq. (4.20) then matches

Eq. (4.2) as below,

Ĉ = (C0W)W′ + C̄

= Â,

(4.22)

and this gives the denoised lower dimensional estimates of the original data set C.

4.1.1 Simulation studies

Simulation data design

In addition to the CFN radiotracer simulations used in section 3.1.1, a simulation of 11C-PiB

was also performed in this section. 11C-PiB is a reversible Aβ-binding radiotracer, and it is

the radiotracer of the clinical data in both Chapter 3 and the current Chapter (Chapter 4).

Therefore, for simulation studies, the methods are evaluated for two radiotracers, CFN and

11C-PiB, in this Chapter. In this Chapter, the methods are compared in terms of DVR, instead

of BPND. It is noted earlier in Eq. (2.41) that BPND is related to DVR by BPND = DVR− 1.

The set of kinetic parameters — exchange rate constants K1, k2–4 and the non-displaceable
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distribution volume (VND) — below was used to make the first simulation data set (CFN

radiotracer). These kinetic parameters were adopted from a previous study [52]. These are also

the same range of parameters adopted by other studies such as [16].

• 11 values of DVR were set in the range of [0.0, 4.0], covering a range of [0.0, 0.35] for k3.

• [K1 k4] = [0.1835 mL cm−1 min−1 0.115 min−1].

• [k2 k3] = [K1/VND (DVR− 1) · k4].

• VND = 1.59 mL cm−1.

The above parameters are similar to the ones in Chapter 3, except for that now there is DVR

instead of BPND. Simulated data were made for a 60 min, 27-frame scan (6 × 0.1667 min,

3 × 0.5 min, 5 × 1 min, 5 × 2.5 min, and 8 × 5 min). Two-tissue compartment PET data were

simulated using a clinically measured plasma time-activity curve. The reference region was

formed with a minimal noise level, and DVR = 1. As per the physiological assumptions of the

reference region, the delivery (K1) and clearance (k2) rates were set identical to those of the

target tissues.

For 11C-PiB simulations, the kinetic parameters, K1, k2–4 and VND, below were used to simulate

two-tissue compartmental model PET data. These parameters covers a range of parameters in

one of the pioneering studies of 11C-PiB [26].

• 11 values of DVR were set in the range of [0.0, 4.0], covering a range of [0.0, 0.045] for

k3.

• [K1 k2] = [0.262 mL cm−1 min−1 0.121 min−1].

• [k3 k4] = [(DVR− 1) · k4 0.015].

• VND = K1/k2.

The scan period and frame for 11C-PiB simulation was made similar to that of clinical 11C-

PiB PET images used in this study. These were 70 min, 25-frame scan (6 × 0.1667 min,

3 × 0.3333 min, 2 × 1 min, 2 × 3 min, and 12 × 5 min). The reference region was formed in a

similar manner as for CFN; minimal noise level; DVR = 1; and K1 and k2 identical to those of

the target tissues.
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For each of the two radiotracers, a noise-free tTAC was formed for each DVR value. Statistical

noise was added to the noise-free tTACs to form noisy tTACs. For each noise-free tTAC, 1024

noisy tTACs were simulated as a slice of 32 × 32 voxels. Four methods, LSC–PCA, OLS–PCA,

LSC and conventional OLS-based LGA, were then used to estimate the DVR values from the

noisy tTACs, and the results were compared. The true value for the dissociation rate of the

reference region (kR2 ) used to construct the simulation data was used for all methods. The noise

model used here is the same as descibed in section 3.1.1.

Results

Figure 4.1 presents the simulated tTACs, mimicking the two radiotracers, 4.1(a) CFN and

4.1(b) 11C-PiB. Noise-free tTACs are represented by the thick curves, whereas the thin curves

represent the noisy tTACs. For each noise-free curve, out of the 1024 simulated noisy curves,

only one is shown in each of the subfigures in Fig. 4.1. In both Figs. 4.1(a) and 4.1(b), the

lowermost thick curve denotes the reference region, and the upper 11 curves denote the 11 DVR

values. DVR estimations from 11C-PiB appeared to be sensitive to noise in comparison to CFN,

and therefore, 11C-PiB tTACs were simulated with lower noise levels than CFN, as it can be

seen in Fig. 4.1. Lower radioactivity measurements in 11C-PiB could be a contributing factor

to the raised sensitivity to noise.

Figure 4.2 shows examples of noisy tTACs, and their corresponding PCA-denoised tTACs.

Three denoised tTACs are shown for each radiotracer, and they represent PCA-denoising with

a number of PCs that explains 80%, 95% and 97% of variance in the data, respectively. For

CFN, the tTACs denoised with 95% and 97% variances are still noisy to a noticeable extent.

As the number of PCs is lowered to explain only 80% variance, it can be seen that the tTACs

are further denoised. One still needs to be careful not to lower the number of PCs to a greater

extent. The tTACs would seem well-denoised, however spatial information will be lost and this

cannot be inferred from the tTACs. For 11C-PiB, the tTACs are denoised to a greater extent

in comparison to CFN. This could be, in part, due to that they consists lower noise levels.

Figure 4.3 compares the percentage recovered DVR in the averages of the values estimated

from the simulated noisy tTACs using four methods, LSC–PCA, LSC, OLS–PCA and OLS. In

other words, the difference from 100% denotes the percentage bias. For PCA denoising, CFN
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Figure 4.1: Simulated tTACs for the radiotracers, (a) CFN and (b) 11C-PiB. In each figure,

the thick and thin curves represent the noise-free and noisy tTACs, respectively. The upper 11

thick curves correspond to the 11 DVR values, whereas the 12th and lowest curve correspond

to the time-activity curve of the reference region.
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Figure 4.2: Simulated noisy tTACs and their corresponding PCA-denoised tTACs for the two

radiotacers, (a) CFN and (b) 11C-PiB. Three denoised tTACs are shown for each radiotracer.

The three denoised tTACs correspond to PCA with a number of PCs that explains 80%, 95%

and 97% variance, respectively.
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tTACs were denoised with 95% and 97% variances for the results in Figs. 4.3(a) and 4.3(b),

respectively. The same is true for 11C-PiB in Figs. 4.3(c) and 4.3(d). As expected, LSC–PCA

estimates have smaller error bars than LSC estimates. This is especially visible in the figures

for 11C-PiB, Figs. 4.3(c) and 4.3(d). This demonstrates PCA’s effectiveness of reducing the

variance. PCA’s variance reduction can also be seen for OLS–PCA estimates. With regards to

Figs. 4.3(c) and 4.3(d), it can be seen that OLS–PCA is greatly affected by the choice of the

percentage variance that should be accounted for in PCA denoising. With only 2% difference

of the explained variance, the difference in OLS–PCA estimates in Figs. 4.3(c) and 4.3(d) is

clearly visible.

Table 4.1 shows some of the average values of the estimated DVR for CFN raditracer, with

tTACs denoised with 95% variance PCs for PCA methods. The data in Tab. 4.1 correspond

to some of the values plotted in Fig. 4.3(a). Table 4.1 also confirms reduced variance in both

PCA-based methods, and also the difference in bias reduction of these two PCA-based methods,

LSC–PCA and OLS–PCA, i.e., smaller bias for LSC–PCA compared to OLS–PCA.

Table 4.1: Averege DVR values (and standard deviations in brackets) estimated from the noisy

tTACs by the four methods, LSC–PCA, LSC, OLS–PCA and OLS, for CFN radiotracer. These

data correspond to Fig. 4.3(a), in which PCA methods are denoised with 95% variance PCs.

True DVR 1.250 2.350 2.900 3.450 4.00

Estimated DVR

LSC-PCA 1.249 (0.063) 2.356 (0.167) 2.895 (0.246) 3.456 (0.324) 3.992 (0.394)

LSC 1.249 (0.068) 2.344 (0.190) 2.881 (0.288) 3.452 (0.372) 4.022 (0.518)

OLS-PCA 1.212 (0.061) 2.233 (0.152) 2.719 (0.219) 3.212 (0.277) 3.656 (0.338)

OLS 1.211 (0.065) 2.212 (0.165) 2.683 (0.227) 3.169 (0.296) 3.616 (0.395)
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4.1.2 Clinical 11C-PiB PET data studies

Study design

A cohort of 12 (11 Aβ-negative and 1 Aβ-positive) subjects was included in this study. The

subjects underwent 70 min 11C-PiB PET scan of 25 frames (6 × 0.1667 min, 3 × 0.3333 min,

2 × 1 min, 2 × 3 min, and 12 × 5 min). The scan procedure was carried out according to

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 11C-PiB standards. The study was

approved by the Ethics Committee of Kindai University Hospital, and written informed consent

was obtained from all participants. Obtained PET data were voxels of size 2.1 × 2.1 × 3.4 mm3,

in arrays of 128 voxels × 128 voxels × 47 slices. DVR parametric images were then generated

from the PET data using the LSC–PCA, OLS–PCA, LSC, and OLS methods.

In addition to visual inspections, the parametric images were compared numerically in terms

of the contrast between the four main gray matter cortices (frontal, temporal, occipital, and

parietal) and white matter (corona radiata). The contrast index was calculated by the equation,

C =
µW − µG
σW + σG

, (4.23)

as in [55]. µG and µW denote the mean DVR of the gray and white matter regions, respectively,

whereas σG and σW denote the standard deviations of DVR in the gray and white matter

regions, respectively. All calculations were performed in MATLAB (The MathWorks, Inc.,

Natick, MA, USA).

Results

Figure 4.4 shows a comparison of the medians of contrast between gray matter cortices and

white matter for DVR images obtained by the four methods (LSC–PCA, OLS–PCA, LSC and

OLS), calculated for 11 Aβ-negative subjects. Statistical differences of these values are express-

esd in Tab. 4.2. In the left figure, 4.4(a), the data were denoised with PCs that explained 95%

variance for the PCA-based methods. The four gray matter regions show a similar trend, with

the contrast of LSC–PCA and OLS–PCA images being the highest, as expected. As similar

results were observed for LSC–PCA and OLS–PCA in the simulation results for 11C-PiB data

denoised with 95% of variance, here similar contrast is also observed between LSC–PCA and

OLS–PCA. The figure on the right, 4.4(b), shows contrast values of a single subject, and for

which the tTACs were denoised with 97% of variance for the PCA methods. Numerical values
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for this figure are given in Tab. 4.3. Similar to simulation results, here it is observed again that

OLS–PCA can perform poorly in comparison to LSC–PCA if more PCs are used. This serve to

inform that, more precaution is required for OLS–PCA to balance between bias and variance

reduction. On the other hand, for LSC–PCA, one needs only to consider throwing away a few

PCs that could help with variance reduction, and not worry about the bias.

The Friedman Test Post-Hoc multiple comparison p-values of the difference between the con-

trasts of the images obtained using the four methods are shown in Tab. 4.2. The contrasts

being compared in Tab. 4.2 are those used to plot Fig. 4.4(a). According to these statistical

values, the contrasts of both LSC–PCA and OLS–PCA images are significantly different from

those of LSC and OLS.

Table 4.2: Friedman test and Post-Hoc multiple comparisons of the p-values of the contrast.

Tabulated numerical values correspond to the p-values of the difference between the two methods

in the corresponding rows and columns.

Friedman Test (p value = 0.001)

Post-Hoc Multiple Comparisons p-values

OLS-PCA LSC OLS

LSC–PCA 0.656 0.005 < 0.001

OLS–PCA 0.025 < 0.001

LSC 0.086

Figure 4.5 shows axial slices of the DVR parametric images obtained using the four methods.

PCA-based methods were denoised with the number of PCs that explained 95% variance for

these images. The two images in the upper row are from two Aβ-negative subjects, while the

bottom row is from the Aβ-positive subject. In the figure, noise components in the images

estimated by the LSC method can be seen appearing as random noisy pixels/regions with high

DVR values throughout the slice (see the black arrows in Fig. 4.5). Images obtained by the

LSC–PCA method exhibit a rather fair distribution of the DVR values with no sharp increases
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Table 4.3: Contrast values for a single Aβ-negative subject, which are plotted in Fig. 4.4(b).

Contrast

Frontal Temporal Occipital Parietal

LSC-PCA 1.162 1.030 1.110 1.049

OLS-PCA 1.030 0.939 0.962 0.847

LSC 1.007 0.915 0.919 0.789

OLS 0.905 0.831 0.813 0.624

in the pixels/regions. The images obtained by OLS–PCA appear similar to those for LSC–PCA.

This was expected since similar trends were observed between LSC–PCA and OLS–PCA for

DVR estimates in simulation results and also for contrast values, for the tTACs denoised with

95% variance. The LSC images thus appear slightly thick (in comparison to the LSC–PCA im-

ages), which can hinder the contrast between the brain structures. For the OLS-based images,

the lowest DVR estimates were observed as expected.

Figure 4.6 shows a single slice of DVR image for an Aβ-negative subject from which the contrasts

in Tab. 4.3 were calculated, for each of the four methods. The difference between LSC–PCA

and OLS–PCA can again be seen in this figure, with the OLS–PCA image being biased in

comparison to that of LSC–PCA.
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Figure 4.3: Percentage recovered DVR of the average (N = 1024) DVR values estimated from

the noisy tTACs by the four methods, LSC–PCA, LSC, OLS–PCA and OLS. The error bars

denote the standard deviations. In the upper panel, (a) and (b), CFN tTACs were denoised

with PCA at 95% and 97% variance respectively. The same applies for 11C-PiB in the lower

panel, (c) and (d).
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Figure 4.4: (a) Box plots of the DVR contrast between gray matter regions, frontal, temporal,

occipital and parietal cortices, and white matter region, corona radiata, calculated for the 11

Aβ-negative subjects. For the PCA methods, the tTACs were denoised with 95% variance. The

circles in the box plots denote the means, whereas the horizontal lines denote the medians. (b)

Plots of the DVR contrast of a single subject. For these plots, for the PCA methods, the brain

volume was denoised with 97% of variance.
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Figure 4.5: DVR parametric images as obtained by the four methods, LSC–PCA, OLS–PCA,

LSC and OLS. The two upper rows are for Aβ-negative subjects, whereas the lowermost row is

for the Aβ-positive subject. For PCA-based methods, the tTACs were denoised with PCs that

explained 95% of variance.
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Figure 4.6: DVR parametric images as obtained by the four methods, LSC–PCA, OLS–PCA,

LSC and OLS. In this case, the tTACs were denoised with PCs that explained 97% of variance

for the PCA-based methods.
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4.2 Correlated component analysis

Like PCA, CorrCA is also a feature extraction method. CorrCA operates by identifying compo-

nents that are maximally correlated between repetitions in multivariate data [19]. Specifically,

CorrCA maximizes the ratio of between-repetition to within-repetition covariance. In the con-

text of our application to PET data, our repetitions are along the slices dimension. CorrCA will

therefore maximize the ratio of between-slices to within-slices covariance. This ratio is generally

referred to as inter-subject correlation (ISC) [19]. Specifically in our context, it translates to

inter-slice correlation.

Consider a set of dynamic PET brain volume data arranged as an array of size q × p×M ,

where M denotes the number of slices, q denotes the number of voxels in a slice, and p denotes

the number of time points (frame numbers). CorrCA identifies directions in the p-dimensional

space along which the tTACs maximally correlate between M slices, with correlation measured

across q voxels.

Let us put it into perspective in comparison to PCA applied to the same data. For the PCA

case, the brain volume will be represented as an R× p array, where R is a product of q and

M , and denotes the total number of voxels in the whole brain volume. PCA returns a

set of p-dimensional vectors which successively capture the variance in the data in a descending

order. Similarly, CorrCA returns a set p-dimensional vectors which successively capture the ISC

in a descending order. CorrCA also formulates into an eigenvalues and eigenvectors problem,

from which the p-dimensional orthogonal vectors (and correlated components) are found as the

eigenvectors, and ISCs as the eigenvalues.

Maximizing the between-slices to within-slices covariances maximizes the mean-over-variance

across slices, which has been asserted to define a signal-to-noise ratio [19]. CorrCA capitalize

on the ability to simultaneously operate ”within individual slices (within-slices covariances)”

and ”across all slices (between-slices covariances)”, without arranging the slices in one plane.

That means operating directly on the q × p×M array, unlike for PCA where the slices are

arranged in one plane side-by-side to form the R× p array. This means that CorrCA is a dual

operation, exploiting through all slices whilst also treating each slice individually. This can be

seen as advantageous over PCA, which means CorrCA can possibly provide a better noise filter
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method over PCA. This therefore forms the motivation to introduce CorrCA to PET parametric

imaging and assess the performance of CorrCA in comparison to PCA. For CorrCA only two

correlated components were retained to denoise the tTACs.

For a brief mathematical outline of CorrCA as presented in [19], let the observed noisy tTACs

be xji = [cji (t1),c
j
i (t2), · · · ,c

j
i (tp)]

T , where i = 1, · · · , q and j = 1, · · · ,M . (T denotes a

transpose). Thus, xji ∈ Rp×1 is the ith voxel in the jth slice. This slice can be represented as,

xji (t) = Ayji + εji , (4.24)

where A ∈ Rp×k (k ≤ p) is a projection matrix to be constructed by CorrCA; yji ∈ Rp×1 is the

coefficient vector; and εji ∈ Rp×1 is the residuals vector.

The jth slice can be written as,

Cj =



cj1(t1) cj1(t2) . . . cj1(tp)

cj2(t1) cj2(t2) . . . cj2(tp)

...
...

. . .
...

cjp(t1) cjp(t2) . . . cjp(tp)


q×p

, (4.25)

and the whole brain data as,

C =
[
C1 C2 . . . CM

]
q×p×M

. (4.26)

The objective of CorrCA is to find a linear combination of the p measurements (yji ), defined as,

yji = vTxji , (4.27)

such that the correlation across M slices is maximized —where v ∈ Rp×1 is a projection vector.

The ISC (ρ) is defined as the ratio of the between-subject covariance, rB, and the within-subject

covariance, rW, which can be expressed as,

ρ =
1

M − 1

rB
rW

. (4.28)

The term 1/(M − 1) is such that ρ ≤ 1. In our context, the between-slices covariance can be

interpreted as a sum over all pairs of slices, and within-slices covariance can be interpreted as
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a sum over all slices, as in the equations below,

rB =
M∑
j=1

M∑
k=1, k 6=j

q∑
i=1

(yji − ȳj)(yki − ȳk)

rW =
M∑
j=1

q∑
i=1

(yji − ȳj)(yji − ȳj),

(4.29)

where ȳj = 1
q

∑q
i=1 yji is the sample-mean of the projected data for the jth slice. Substituting

Eq. (4.27) into Eq. (4.29) gives,

rB = vTRB

rW = vTRW,

(4.30)

where RB and RW are the between-slice and within-slice covariance matrices of xji , respectively

given by,

RB =

q∑
i=1

M∑
j=1

M∑
k=1, k 6=j

(xji − x̄j∗)(x
k
i − x̄k∗)

T (4.31)

RW =

q∑
i=1

M∑
j=1

(xji − x̄j∗)(x
j
i − x̄j∗)

T . (4.32)

Substituting Eq. (4.30) into Eq. (4.28) gives,

ρ =
1

M − 1

vTRBv

vTRWv
. (4.33)

To maximize ρ, we rearrange and equate Eq. (4.33) to zero and differentiate with respect to

vT , i.e.,
∂

vT
(
ρ vTRWv − vTRBv = 0

)
=⇒ ρRWv = RBv.

(4.34)

Equation (4.34) means that v is an eigenvector of RW
−1RB, and ρ is the corresponding eigen-

value —under the assumption that RW is an invertible matrix. It is therefore that ISC is

maximized by projecting the data onto the eigenvector of RW
−1RB with the largest eigenvalue

[19]. In a similar manner as for PCA, these eigenvector and eigenvalue can be labeled as v1

and ρ1, denoting the first eigenvector and eigenvalue, respectively. Further in a similar way to

PCA, successive eigenvectors (v2, · · · , vp) and corresponding eigenvalues (ρ2, · · · , ρp) captures
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the ISC in a decreasing order. To find all the eigenvectors and eigenvalues, maximal ISC is

summed over all components. The components are required to be uncorrelated, which means

each component captures “different and independent” characteristics of the data [19].

In entirety, Eq. (4.33) can therefore be expressed as,

J(V) =

p∑
d

ρd =

p∑
d

vTd RB vd

vTd RW vd
. (4.35)

Thus, CorrCA maximize Eq. (4.35) with respect to V = [v1, v2, · · · , vp], subject to vTd RW vc = 0

for c 6= d. The solution to Eq. (4.35), corresponding to Eq. (4.34) is,

RBV = RWVΛ. (4.36)

Here, Λ ∈ Rp×p denotes a diagonal matrix consisting of the ISC values (ρd) in the diagonals.

These ISC values are eigenvalues of the eigenvectors vd which defines the projections yd = vTd x.

The first projection, along the first eigenvector, provides the highest ISC across M slices. Suc-

cessive projections are uncorrelated with each other and captures ISC in decreasing order, i.e.,

the second projection correspond to the direction with second largest ISC and so forth, until

the last projection which corresponds to the direction with the smallest ISC. [19].

In matrix format, Eq. (4.24) can be written as,

X|p×q×M = (A|p×k) (Y|k×q×M) + ε|p×q×M. (4.37)

The least-squares estimate of A is,

Â = RWv(vTRWv)
−1
. (4.38)

Analogous to using only a few PCs in PCA, here, using only the first few k (k ≤ p) correlated

components with the highest ISC values in Eqs. (4.37) and (4.38), denoised tTACs can be

estimated as per Eq. (4.24) as,

Ĉ = X̂ = ÂŶ. (4.39)

For mean-centred input data, C0, we get that,

Ĉ = ÂŶ + C̄, (4.40)

where C̄ is the mean of C.
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In short, it can be inferred from Eqs. (4.34) and (4.36) that CorrCA performs PCA on the ma-

trix of the ratio of between-slices to within-slices, RBR−1W , whose the eigenvalues define the ISC.

CorrCA was computed using the MATLAB codes provided by Parra and colleagues [19]. The

code can be found at http://parralab.org/corrca.

4.2.1 Simulation studies

Simulation data design

The simulation parameters and conditions used for CorrCA assessment in this section are the

same with those used in section 4.1.1 for PCA studies. However, here a further step was taken to

evaluate the methods at different noise levels. The magnitudes of the noise level were calculated

as the percentage of the ratios of the “standard deviation of the noisy tTACs” to the “mean of

the noise-free tTAC” for the portion of the time range used for the DVR estimation. For CorrCA

assessment, the focus is mostly on LSC-CorrCA against LSC-PCA. However, a brief analysis

of LSC–CorrCA and OLS–CorrCA, demonstrates (for OLS–CorrCA) the similar issue observed

with OLS–PCA that one needs to be extra careful when choosing the number components to

retain to denoise the tTACs. The results reported for LSC-CorrCA are mainly for the data

denoised with only two components (correlated components). This is to assess if LSC-CorrCA

with only two correlated components can achieve better or similar results with LSC–PCA with

many PCs.

Results

Figure 4.7 shows a simulated noise-free tTAC, a corresponding noisy tTAC, and three denoised

tTACs, for the two radiotracers, CFN 4.7(a) and 11C-PiB 4.7(b). Two of the denoised tTACs

were denoised by CorrCA with 2 and 5 components, as denoted by the subscripts in the legend.

For PCA, examples of tTACs denoised with many components are already shown in section

4.1.1 (Fig. 4.2). In this figure the PCA-denoised tTACs were denoised with 2 PCs. The tTACs

denoised by CorrCA with two components appears to to give the best estimate of the true

(noise-free) tTAC. The tTAC denoised by PCA with two PCs appear to overestimate the true

curve in Fig. 4.7(a) for CFN, but appears to underestimate the one for 11C-PiB in 4.7(b).

Overall all three denoised tTACs appears to be considerably denoised. However, especially for

PCA, it is known that denoising the tTACs with only two PCs leads to information loss which
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leads to low quality images. That means looking at the tTACs alone is not enough to conclude

whether a denoising method will lead to improved images.
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Figure 4.7: Simulated noisy tTACs and their corresponding CorrCA- and PCA-denoised tTACs

for the two radiotacers, (a) CFN and (b) 11C-PiB. Three denoised tTACs are shown for each

radiotracer – two denoised by CorrCA and one denoised by PCA. The subscripts denote the

number of components used to denoise the corresponding curves.

Figure 4.8 shows the percentage bias in the averages of DVR values estimated from the noisy

tTACs by four methods, LSC–CorrCA, LSC–PCA, LSC, and OLS. The percentage bias is the

difference from the 100% mark, i.e., the closer the plot is to 100% the less biased it is. Here

the focus is on LSC–CorrCA and LSC–PCA. It can be seen in both Figs. 4.8(a) and 4.8(b)

that the variance is drastically reduced in the LSC–CorrCA estimates. This is mostly because

only 2 components were used to denoise the data for LSC–CorrCA, in comparison to many PCs

(which could go up to 10) used to retain 95% variance for LSC–PCA. Estimates from tTACs

denoised by PCA with 2 PCs would also have smaller variances. It then remains to evaluate

the clinical images to assess which method can hold much information in a smaller number of

components.

In Fig. 4.9, it is shown for both radiotracers that, when all the correlated components are

used, CorrCA returns the original data, and therefore the DVR estimates of LSC–CorrCA are

identical to those of LSC. This is also a known characteristic of PCA [16] , i.e., when all PCs
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Figure 4.8: Percentage recovered DVR of the average (N = 1024) DVR values estimated from

the noisy tTACs by four methods, LSC–CorrCA, LSC–PCA, LSC and OLS. The error bars

denote the standard deviations. In both figures, (a) and (b), the tTACs were denoised with

two components for LSC–CorrCA. For LSC–PCA, the tTACs were denoised with the number

of PCs accounting for 95% of variance in the data.

are used PCA returns the original data.

Figure 4.10 shows the slices estimated from the noisy tTACs by four methods, LSC–CorrCA,

LSC–PCA, LSC and OLS. In this figure, it can be seen that the LSC–CorrCA estimates show

better estimates than other methoods, in agreements with the smaller variances observed in

Fig. 4.8. The noise-free slices are shown in Fig. 4.11.

Figure 4.12 compares the DVR values estimated by LSC–CorrCA and OLS–CorrCA, in which

the tTACs were denoised with 5 components. It is revealed here that if many components

are used, it raises the bias in the OLS–CorrCA estimates, similar to what was observed for

OLS–PCA. This further puts LSC to be the regression method of choice for LGA-based PET

parametric imaging.

In Fig. 4.13, the four methods, LSC–CorrCA, LSC–PCA, LSC and OLS are compared at dif-

ferent noise levels. In Fig. 4.13(a), the estimates are plotted individually for each noise level.

In Fig. 4.13(b), the estimates at all noise levels are put together in a box plot. It is seen again
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Figure 4.9: Percentage recovered DVR of the average (N = 1024) DVR values estimated

from the noisy tTACs by four methods, LSC–CorrCA (with two correlated components), LSC–

CorrCA (with all correlated components), LSC and OLS. The error bars denote the standard

deviations. Figures (a) and (b) shows the estimates for CFN and 11C-PiB radiotracers, respec-

tively.

here how LSC–CorrCA has reduced variances.

In Fig. 4.13, however, the minimum number of PCs was set to three. This means that, if the

number of PCs that accounts for 95% of variance are less than 3, 3 PCs are used, and if the

number of PCs that accounts for 95% of variance are more than three, then that number of

PCs are used. Figure 4.14 is the equivalent of Fig. 4.13 without the restriction of minimum

number of PCs of 3. The effect of this condition can be seen for the first three lower noise

levels in Fig. 4.14(a), in which LSC–PCA shows an underestimation in comparison to all other

methods —including OLS-based LGA. The underestimation in LSC–PCA-based estimates is

also reflected in Fig. 4.14(b). For the first three lower noise levels, the number of PCs that

accounted for 95% of variance is one. This observation provides further insight into the notion

that using a few number of PCs leads to information loss. A similar trend was observed in

[16], in which 1 PC-based estimates appeared slightly biased compared to those of 2 PCs. It is

therefore important to always consider including more than 1 PC when denoising by PCA.
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Figure 4.10: A display of the slices obtained by four methods, LSC-CorrCA, LSC-PCA, LSC and

OLS from simulated noisy tTACs for CFN radiotracer (DVR = 4). Each color block represents

a slice of 32 × 32 voxels, which makes a total of 1024 tTACs. The tTACs were denoised with 2

components for LSC–CorrCA, and with 95% variance for LSC–PCA.

4.2.2 Clinical 11C-PiB PET data studies

Study design

The clinical data described and used for analysis in section 4.1.2 are the same data used for this

section. Under this section, the focus is completely on LSC–CorrCA vs LSC–PCA.

Results

Figure 4.15 compares the box plots of the contrast between gray and white matter for images

obtained by two methods, LSC–CorrCA and LSC–PCA. The tTACs were denoised with 2 com-

ponents for LSC–CorrCA, and with 95% variance for LSC–PCA. The contrast was calculated

for 11 Aβ-negative images, as it was done in section 4.1.2 for Fig. 4.4(a). Some difference could

be seen in the mean (circle marks) and medians (horizontal lines) in the box plots of the two
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Figure 4.11: A display of the simulated noise-free slices.

methods in Fig. 4.15. However the p value of their statistical differences across the four regions

as calculated by the Friedman Post-Hoc multiple comparison is 0.076, slightly over the desired

0.05 statistical significance mark. Numerical values for Fig. 4.15, mean values ans standard

deviations are shown in Tab. C.1.

Table 4.5 shows the computation time of four methods, LSC–CorrCA, LSC–PCA, LSC and

OLS. These data show another advantage aspect of the LSC–CorrCA method compared to

LSC–PCA, in which LSC–CorrCA takes shorter computation time compared to LSC–PCA. As

expected, both LSC–CorrCA and LSC–PCA took longer computation time compared to LSC.

This is because of the additional task of data denoising, by CorrCA and PCA, in addition to

regression parameter estimation by LSC. The OLS approach required the shortest computation

time, as expected as well.

Figure 4.16 compares the images obtained by two methods, LSC–CorrCA and LSC–PCA, for two

subjects, Aβ-negative and Aβ-positive. For the Aβ-negative subject, the LSC–CorrCA image

appears to show higher DVR estimates. For the Aβ-positive subject, DVR estimates across the

slice appear about the same for LSC–CorrCA and LSC–PCA, with LSC–PCA image showing

a rather smoother distribution. For LSC–CorrCA images, it is worth noting that they were all
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Figure 4.12: Comparison of the percentage recovered in the average (N = 1024) DVR values

estimated from the noisy tTACs by four methods, LSC–CorrCA, OLS–CorrCA, LSC and OLS.

For these results, the tTACs were denoised with 5 components for both LSC–CorrCA and

OLS–CorrCA.

estimated with 2 components, and an optimization for the number of components could make

for an improvement of the images. Overall, these results show that LSC–CorrCA with only 2

components achieved about the same or better results with LSC–PCA with many components.

This means that CorrCA contains much information in a smaller number of components, in

comparison to PCA. For PCA, the number of PCs that accounted for 95% variance in the 12

clinical data sets (11 Aβ-negative subjects and 1 Aβ-positive subject) used in this study were

all greater than 2, ranging from 4 to 8.
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Figure 4.13: DVR estimates of CFN radiotracer. (a) A comparison of DVR (DVR = 4) estima-

tion at different noise levels by four methods, LSC–CorrCA, LSC–PCA, LSC and OLS. (b) Box

plots of the estimated DVR (DVR = 4) values. These plots includes the values estimated at all

noise levels. The tTACs were denoised with two components for LSC–CorrCA. For LSC–PCA,

the tTACs were denoised with the number of PCs accounting for 95% of variance in the data

(minimum number of PCs set to three).
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Figure 4.14: DVR estimates of CFN radoitracer. (a) A comparison of DVR (DVR = 4) estima-

tion at different noise levels by four methods, LSC–CorrCA, LSC–PCA, LSC and OLS. (b) Box

plots of the estimated DVR (DVR = 4) values. These plots includes the values estimated at all

noise levels. The tTACs were denoised with two components for LSC–CorrCA. For LSC–PCA,

the tTACs were denoised with the number of PCs accounting for 95% of variance in the data.
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Figure 4.15: Box plots of the DVR contrast between gray matter regions, frontal, temporal,

occipital and parietal cortices, and white matter region, corona radiata, calculated for the 11

Aβ-negative subjects for the images obtained by two methods, LSC–CorrCA and LSC–PCA. For

LSC–CorrCA, the tTACs were denoised using two components. For the LSC–PCA, the tTACs

were denoised with 95% variance. The circles in the box plots denote the means, whereas the

horizontal lines denote the medians.

Table 4.4: Numerical values for the contrast between gray and white matter regions of the

images obtained by two methods, LSC–CorrCA and LSC–PCA.

Contrast

Frontal Temporal Occipital Parietal

LSC-CorrCA 1.236 ± 0.341 1.224 ± 0.360 1.136 ± 0.349 0.870 ± 0.266

LSC-PCA 1.105 ± 0.329 1.157 ± 0.333 1.056 ± 0.351 0.825 ± 0.296
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Figure 4.16: DVR parametric images of a Aβ-negative and Aβ-positive subject, obtained by

two methods, LSC–CorrCA and LSC–PCA. The tTACs were denoised with two components

for LSC–CorrCA, and with 95% variance for LSC–PCA.

Table 4.5: Means (± standard deviations) of computation times taken by each of the four

methods, LSC–CorrCA, LSC–PCA, LSC, and OLS, to obtain a whole DVR image of size 128 ×

128 × 47 —calculated for the 11 Aβ-negative subjects and 1 Aβ-positive subject (i.e., N = 12).

Computation time (s)

LSC–CorrCA LSC–PCA LSC OLS

9.249 ± 1.811 10.678 ± 1.225 7.514 ± 0.879 2.570 ± 0.165
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4.3 Discussion

The results obtained in section 4.1 demonstrate that the LSC–PCA method improves the con-

trast of parametric images, in comparison with LSC. With LSC and PCA combination, LSC

reduces the bias, and PCA could help fend off the effects of the variations in the estimates,

resulting in parametric images with both minimal bias and variance. OLS–PCA was also found

to have reduced bias and improved contrast, but this was found to be greatly affected by the

number of PCs used to denoise the tTACs. For the CFN and 11C-PiB simulations, it was seen

that the OLS–PCA estimates could get biased if one is not careful in determining the number

of PCs. In this case, one should then rely on LSC for bias reduction. This should therefore

highlight the importance of adopting a less-biased regression method, LSC, even when PCA

tTACs denoising method is applied. This is important especially when one is unsure of the

number of PCs to use, which is usually the case in practical settings.

PCA has been shown to reduce bias using only a few PCs [16]. Using a minimal number of PCs

might result in information loss, leading to lower contrasts. This means that information is lost

with the number of PCs discarded, i.e. the fewer the number of PCs used the more information

is lost. The question of how many PCs to retain has no exact answer. It mostly depends on

the purpose of the study in question. For PET imaging, to maintain the spatial resolution of

the images, it is necessary to retain sufficient variance to reconstruct denoised tTACs. This

can always be set by determining the percentage variance to be accounted for in the denoised

data, and all the PCs that add up to that value can then be retained. For OLS–PCA it is

therefore that using a few PCs leads to information being lost. On the other hand, using many

PCs reintroduces the noise in the data, and the estimates get biased. This is what LSC–PCA

is addressing; to allow many PCs to be used without risking bias.

The CorrCA denoising approach was applied to PET parametric imaging for the first time, and

assessed against PCA. CorrCA is one of the many various approaches to canonical correlation

analysis (CCA) of multidata set, developed to identify linear combinations of signals that are

reliably reproduced across the data. In our context of a single PET image, CorrCA operates

by maximizing the ratio of the correlations measured within and across the slices in a PET

image. This is in contrast to PCA which focuses on the variance. Here, CorrCA is employed

as a temporal filter of tTACs, similar to the manner in which PCA is used. By using only a
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few dimensions with the largest ISCs, one could get rid of the noise in the data along with the

remaining components with smaller ISCs, whilst preserving the essential characteristics of the

data.

The simulation results showed that both LSC–CorrCA and LSC–PCA reduced the variance in

the DVR estimates, in comparison to LSC. This was indicated by smaller error bars in the

plotted figures. LSC–CorrCA estimates showed the smallest error bars amongst all methods,

suggesting that it will give clinical images with improved contrasts. It was also shown that

OLS–CorrCA estimates get biased if more components are used, similar to OLS–PCA; this

informs that LSC should be the preferred regression method to estimate the LGA slope.

The contrast of LSC–CorrCA images were observed to be higher than those for LSC–PCA im-

ages, as expected based on the simulation results. However, this difference was not statistically

significant in terms of the calculated p-value. These findings based on the calculated contrasts

are in agreement with the visuals of the displayed images, as not much of a difference could be

seen between the images obtained by the two methods, LSC–CorrCA and LSC–PCA. It should

however be noted that LSC–CorrCA with only two components was able to achieve seemingly

better or similar results with LSC–PCA with many PCs. This could be that CorrCA capture

much information in a less number of components in comparison to PCA. This will require fur-

ther analysis to be established as such. As for computation time, LSC–CorrCA outperformed

LSC–PCA.

Another aspect of LSC–CorrCA is depicted in Fig. 4.17. Figure 4.17 shows scatters of DVR

estimates at different noise levels for four methods, LSC–CorrCA, LSC–PCA, LSC, and OLS.

In comparison to other methods, the variance of LSC–CorrCA estimates seems to be unaffected

by noise level, as the dispersion in the scattered DVR estimates does not show an increase with

noise level. This signifies a positive feature for LSC–CorrCA. Other methods show a clear in-

crease in the dispersion of DVR estimates with respect to noise level. For LSC–CorrCA method

however, the scattered DVR estimates show some irregularities with respect to noise level, with

some estimates at lower noise levels exhibiting larger dispersion than those at higher noise levels.

This implies some instability in the LSC–CorrCA method. For CFN radiotracer, the effect of

this observation appears to be not of concern in comparison to LSC–PCA. For 11C-PiB radio-
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tracer, however, it appears these estimates with unexpected larger variances attains variances

larger than those for LSC–PCA. The root cause of this instability resulting in random increases

in the dispersion of LSC–CorrCA estimates is unclear at this point, and it will be studied in

future researches.

In the approach proposed in this study, the number of correlated components to keep was de-

termined with Â and Ŷ, which are used in Eqs. (4.39) and (4.40). As explained earlier, this

approach is equivalent to performing PCA on the matrix RBR−1W . In other words, this ap-

proach is as well equivalent to using a few, k, principal vectors in vT in Eqs. (4.27) and (4.38).

Therefore, the ISC values correspond to the variances explained by the eigenvectors of RBR−1W

in this PCA operation.

An alternative method is to perform the truncation in RB and RW in Eq. (4.36) [19]. In

doing this, the resulting Â and Ŷ will also have reduced dimensions. This approach seemed to

have reduced the irregularities observed in Fig. 4.17. However, this approach required a larger

number of dimensions (correlated components) for better contrasts to be obtained in clinical

brain images. Based on the analysis of real data contrast values, this approach also seemed to

fit better with a method based on shuffle statistics [19] for determining the number of relevant

correlated components. Shuffle statistics is used to test for nonlinearity of time series data. In

short, the idea of the shuffle statistics method is to generate surrogate data that are consistent

with the null hypothesis, but also similar to the original data in terms of time and spatial

correlation [19]. For CorrCA, in the context of our PET brain images, the null hypothesis

states that there is no shared one-dimensional subspace in which the data of at least two slices

are correlated. A shuffle statistics technique called random circular shift [19] is used to test

a significant ρ based on the consideration that there is no correlation between slices after a

random circular shift for each slice [19]. However, the number of correlated components that

gave better contrast values were smaller than those estimated by the shuffle statistics-based

approach —hence, overestimation. Overall, the approach used in this study (above paragraph)

appears better than the approach described in this paragraph. However, a thorough analysis of

these two approaches will be necessary in the future.
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Figure 4.17: Scatter of DVR estimates at 6 different noise levels (DVR = 4). (a) Scatter of

DVR values estimated by four methods, LSC–CorrCA, LSC–PCA, LSC and OLS, from noisy

CFN tTACs. (b) Scatter of DVR values estimated by four methods, LSC–CorrCA, LSC–PCA,

LSC and OLS, from noisy 11C-PiB tTACs. The tTACs were denoised with two components for

LSC–CorrCA. For LSC–PCA, the tTACs were denoised with the number of PCs accounting for

95% of variance in the data.
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Chapter 5

Summary and future directions

This study aimed at improving the LGA-based parametric estimates by reducing both the

bias and variance. In the first part of the study (Chapter 3), an alternative linear regression

method, LSC, was employed, and its viability was assessed for BPND estimation. The results

showed that LSC-based estimates are the least biased in comparison to those of MRTM2 and

conventional OLS-based LGA. Specifically, LSC reduced the bias in the estimates of BPND,

up to 12% and 28% difference compared with MRTM2 and conventional OLS-based LGA, re-

spectively. In comparison to the standard OLS-based LGA, LSC reduced the bias at a slight

expense of increased variation. However, in total, LSC providied a better trade-off between bias

and variability, making it a promising tool for LGA-based PET parametric imaging.

Having noted the slightly increased variances in the LSC-based estimates in comparison with

OLS-based estimates, the second part of the study (Chapter 4) employed two tTACs denoising

techniques. These are PCA and CorrCA. Since LSC-based estimates are already least-biased,

the two tTACs denoising methods were employed to reduce the variance in parametric estimates.

Both PCA and CorrCA operates by finding the most important dimensions. These approaches

were assessed in terms of DVR estimation. The results obtained demonstrate that both LSC–

CorrCA and LSC–PCA methods improved the contrast of the parametric images. This was

supported by a reduction in the variation of the estimates observed in the simulation results.

The contrast of LSC–CorrCA images were observed to be slightly higher than those for LSC–

PCA images, as expected based on the simulation results. On the other hand, OLS–CorrCA

and OLS–PCA were also found to improve the contrast of parametric images. However, more

caution is needed for the OLS-based method because if more components are used, the estimates
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could get biased. This therefore demonstrates that it is important to always consider using LSC

as a regression method even when the data are denoised with CorrCA or PCA. Thus, this forms

the basis to encourage the adoption of LSC-based approaches, LSC–CorrCA and LSC–PCA, in

which the complementary capabilities of LSC and PCA or CorrCA assures that both bias and

variance will be reduced, unlike in OLS–CorrCA or OLS–PCA in which one always risks bias.

These findings should be useful in PET parametric imaging for appropriate interpretation of

radiotracer binding in the brain. These are complementary approaches in which LSC mainly

serve to reduce the bias, and PCA and CorrCA are employed to minimise the variance in the

estimates.

For LSC, a deeper look into weighting techniques could provide for improved estimates. The ap-

propriateness of the weight function used in this study is demonstrated in section 3.1. However,

they are estimates, and there is still a room for improvements. Improved weighting could allow

LSC to be a stand-alone approach, which means the data will no longer need to be pre-treated

with methods like PCA or CorrCA prior to parameter estimation by LSC.

Simulation studies showed that the number of components required to adequately denoise the

tTACs could vary depending on factors such as the radiotracer or noise level. Therefore, for

PCA and CorrCA, further studies could be to explore the methods to determine the number

of components to be retained to denoise the data. This is especially worth a while for CorrCA

since it is showing the smallest variations (in simulation data) and the highest contrasts (in

clinical data); the aim will be to clearly reflect these observations in the displayed parametric

images. Investigation and comparison to other tTACs denoising methods would also make good

grounds for further studies.
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Appendix A

Reducing the least-squares cubic

equation to commonly known

regression methods under specific

assumptions

Let us consider the earlier expression of the LSC slope in Eq. (3.48) (Chapter 3) as written

below,

b =

∑
W 2
i

(
Ui

w(Yi)
+ bVi

w(Xi)
− riVi

αi

)
Vi∑

W 2
i

(
Ui

w(Yi)
+ bVi

w(Xi)
− briUi

αi

)
Ui
. (A.1)

This solution is general, and various other regression methods, such as OLS and ODR, can be

obtained only as special cases of this equation. As demonstrated in [13], the sections below

explore through some of the special cases which reduce to some of the commonly known regres-

sion methods.

Below is an earlier expression in Eq. (3.35), and here it is noted for eased referencing.

Wi =
w(Xi)w(Yi)

b2w(Yi) + w(Xi)− 2briαi
. (A.2)
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A.1 Only Yi is subject to errors (i.e., Xi is error-free):

In this case, w(Xi)→∞, and ri → 0. The expression in Eq. (A.2) then reduces to Wi = w(Yi);

and thus Eq. (A.1) solves to,

b =

∑
w(Yi)UiVi∑
w(Yi)U2

i

. (A.3)

This solution is equivalent to the ussual weighted OLS regression of Y on X. Removing the

weight component, Eq. (A.3) then reduces to the expression derived for OLS in Eq. (2.56) as,

b =

∑
UiVi∑
U2
i

=

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2

(A.4)

A.2 Only Xi is subject to errors (i.e., Yi is error-free):

In this case, w(Yi)→∞, and ri → 0. The expression in Eq. (A.2) then reduces to Wi =
w(Xi)

b2
;

and thus Eq. (A.1) solves to,

b =

∑
w(Xi)V

2
i∑

w(Xi)UiVi
. (A.5)

This solution is equivalent to the ussual weighted OLS regression of X on Y , and only the X

variable is being weighted. Removing the weight component, it reduces to the OLS equation

below, which is obtained by considering only the measurement errors in the X variable;

b =

∑
V 2
i∑

UiVi

=

∑
(Yi − Ȳ )2∑

(Xi − X̄)(Yi − Ȳ )

(A.6)

A.3 Errors present in both X and Y variables:

If we assume that w(Xi) = w(Yi) = c (constant) such that,
w(Xi)

w(Yi)
= 1, and ri = 0, Wi in Eq.

(A.2) becomes,

Wi =
c

b2 + 1
. (A.7)

The expression in Eq. (A.1) then reduces to,

b =

∑(
a

b2+1

)2 (
Ui
a + bVi

a

)
Vi∑(

a
b2+1

)2 (
Ui
a + bVi

a

)
Ui

=

∑(
UiVi + bV 2

i

)∑(
U2
i + bUiVi

)
, (A.8)
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which gives,

b2
∑

UiVi − b
(∑

V 2
i −

∑
U2
i

)
−
∑

UiVi = 0. (A.9)

Solving for b from Eq. (A.9) using the standard quadratic approach gives,

b =
(
∑
V 2
i −

∑
U2
i ) +

√(∑
V 2
i −

∑
U2
i

)2
+ 4 (

∑
UiVi)

2

2
∑
UiVi

=
(Syy − Sxx) +

√
(Syy − Sxx)2 + 4S2

xy

2Sxy
.

(A.10)

Equation (A.10) is identical to Eq. (2.62) for ODR, which is obtained by minimizing the sum of

the squares of the perpendicular distances between the observed data points and the estimated

straight line. Again it is shown here that this solution is obtained by assuming that the variances

of the X and Y errors are equal, since in cases where the variances are known, the weights (which

were here are assumed to be equal) are estimated as the inverse of the variances.
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Appendix B

Noise model

The noise model utilised in this study is adopted from previous studies [6, 8, 11, 16]. As per the

description in [11], given the radioactivity concentration, CT , of the radiotracer in the ROI, if

c is the count measured at mid-time t of the frame with ”frame length” ∆t, then we have that,

c =
CT · d ·∆t

a
, (B.1)

where a is a scaling factor, and d is a decay factor given by, d =
(
1
2

)t/T
, where T is the half-life

of a radionuclide. The error in CT can be expressed as,

∆CT =
a ·∆c
d ·∆t

, (B.2)

where, ∆c =
√
c, is the error in c. So, the simulated noisy tTACs are then given by

C̄T = CT (1 + cv ·G(0, 1)), (B.3)

where, cv =
∆CT
CT

=

√
a

CT · d ·∆t
, is the variation coefficient, and G(0, 1) is a random number

of a Gaussian distribution with mean 0, and standard deviation 1.
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Appendix C

Contrast evaluation of simulation

data

For contrast comparison between LSC–PCA and OLS–PCA in simulation data for 11C-PiB, a

set of hypothetical white matter regions were simulated —in addition to the gray matter regions

simulated in Section 4.1.1. For 11C-PiB Aβ-negative images, white matter regions can have high

retention of the radiotracer due to nonspecific retention [25, 56], and slow accumulation and

slower clearance [25]. Therefore, the white matter regions were simulated with the values of K1

(0.190 mL cm−1) and k2 (0.100 min−1) lower than those of the gray matters, and DVR values

high than those of the gray matters. Thus, to simulate white matter with high DVR values

than the garay matters, the 11 unit vector, [0.4 : 0.055 : 0.95], was added to the 11 unit vector

of the gray matter DVRs. This gave the lowest white matter DVR a value of 1.6727 (the lowest

for gray matter is 1.2727), and the highest of 4.95 (the highest for gray matter is 4). The ratio

of these gray and white matter DVR values are within the ranges reported in a previous study

[57]. The scan period and number of frames for 11C-PiB white matter simulations were set to

be similar to those of the gray matter, and thus similar to those of clinical 11C-PiB PET images

used in this study.

Similar with gray matter simulations, a noise-free tTAC was formed for each white matter DVR

value. Statistical noise was added to the noise-free tTACs to form noisy tTACs. For each

noise-free tTAC, 1024 noisy tTACs were simulated as a slice of 32 × 32 voxels. Four methods,

LSC–PCA, OLS–PCA, LSC, and conventional OLS-based LGA, were then used to estimate the

DVR values from the noisy tTACs, and the results were compared.
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The simulated gray and white matter data for 11C-PiB were denoised together by PCA. For

each data set (1024 simulated tTACS for each of the 11 true DVRs), DVR estimation from the

noisy tTACs were performed thrice at 9 percentage variance level of PCA, 91%, 92%, 93%, 94%,

95%, 96%, 97%, 98%, 99% (i.e., 27 times) for for LSC–PCA and OLS–PCA methods. This was

to assess the performance of the two methods over a wide range of percentage variance, since

in a real clinical practice the actual percentage variance to be retained in PCA denoising is not

known. The three estimates at each variance level were differed by a slight change of < 5%

in the magnitude of noise level. The magnitude of the noise level refers to the percentage ra-

tio of the means of “standard deviation in the noisy tTACs to the mean of the noise-free tTAC”.

To have equal set of data for all methods, the LSC and OLS estimates were performed 27 times

at noise levels corresponding to those of the PCA-based methods. The mean and standard

deviations were then calculated for 27 estimates for each 1024 simulated tTACs for each true

DVR value.

Figure C.1 compares the results of contrast between the simulated gray and white matter re-

gions. The comparisons include all calculated DVR values (three times at 9 percentage variance

levels for LSC–PCA and OLS–PCA, and at 27 different noise levels for LSC and OLS). Sta-

tistical comparisons of these contrast are shown in table C.1, using the Friedman test [58] and

Post-Hoc multiple comparison. A statistical significant difference is observed between LSC–

PCA and all other methods. On the other hand, no statistical significant difference is observed

between OLS–PCA and LSC.

The significant p value observed between LSC–PCA and OLS–PCA in simulation results could

be an indication that the same can be obtained for clinical data. This can be investigated with

a larger cohort of clinical 11C-PiB brain data.
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Figure C.1: Box plots of the DVR contrast between the hypothetical simulated gray and white

matter regions, calculated for all DVR values estimated at different percentage variance levels

for LSC–PCA and OLS–PCA, and at 27 different noise levels for LSC and OLS. The circles in

the box plots denote the means, whereas the horizontal lines denote the medians.

Table C.1: Friedman test and Post-Hoc multiple comparisons of the p-values of the contrast

values of simulated 11C-PiB data plotted in figure C.1. Tabulated numerical values correspond

to the p-values between the two methods in the corresponding rows and columns.

Friedman Test (p value < 0.001)

Post-Hoc Multiple Comparisons p-values

OLS-PCA LSC OLS

LSC–PCA 0.041 0.022 < 0.001

OLS–PCA 0.804 < 0.009

LSC 0.018
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