機械理工学科履修フロー

学位授与の方針	1年	2年	3年	4年
1. 基礎知識の修得	微分 積分 偏微分 重積分 微分・積分演習 偏微分・重積分演習 線形代数1 線形代数2 線形代数3 線形代数4 物理学1 物理学2 物理学演習 物理学実験 化学1 化学2 化学実験 情報処理入門 情報処理演習	ベクトル解析 微分方程式論 ついて できます できます できます できます できます できます できます できます	応用解析学 数値計算法	
2. 専門分野の知識 の修得	工業力学1 工業力学2	工業力学3 工業力学4 材料力学1 材料力学2 熱力学 I 流体力学 I 材料基礎工学	機械力学 航空振動工学 熱力学	
3. 汎用的問題解決 力の修得	エ学基礎英語 1 Basic English I Basic Communication I ロジカルライティング I エ学基礎英語 2 Basic English II Basic Communication II ロジカルライティング I	工学技術英語 I A 工学技術英語 I B Basic Academic English I English II English II	工学技術英語 II A 工学技術英語 II B 技術開発英語 A 技術開発英語 B 日本語表現演習 P 世界と日本、芸術と表現、科学と文明)	
4. 道徳的態度と社 会性の修得	エ学院大ス タディーズ 機械理工学 概論	知的財産権 法 CAD1 CAD2	環境工学	
5. 創成能力の修得		機械加工実習 工学基礎 機械理工 実験 演習	創造工学セミナー I A 創造工学セミナー I B 先進工学部特別研究 I 先進工学部	創造工学セミナーⅡ 特別研究Ⅱ
必修科目 選択必修科目 選択科目				

^{*} この表は学位授与の方針とカリキュラムの流れを示している。すべての科目が記載されてはいないので、詳細は学生便覧を参照すること。